Generative AI for Brane Configurations, Tropical Coamoeba and 4d N=1 Quiver Gauge Theories
- URL: http://arxiv.org/abs/2411.16033v1
- Date: Mon, 25 Nov 2024 01:42:12 GMT
- Title: Generative AI for Brane Configurations, Tropical Coamoeba and 4d N=1 Quiver Gauge Theories
- Authors: Rak-Kyeong Seong,
- Abstract summary: We train a generative AI model that takes a choice of complex structure moduli as input and generates the corresponding tropical coamoeba.
We obtain a high-resolution representation of the entire phase space for a family of brane tilings corresponding to the same toric Calabi-Yau 3-fold.
- Score: 0.0
- License:
- Abstract: We introduce a generative AI model to obtain Type IIB brane configurations that realize toric phases of a family of 4d N=1 supersymmetric gauge theories. These 4d N=1 quiver gauge theories are worldvolume theories of a D3-brane probing a toric Calabi-Yau 3-fold. The Type IIB brane configurations that realize this family of 4d N=1 theories are known as brane tilings and are given by the tropical coamoeba projection of the mirror curve associated with the toric Calabi-Yau 3-fold. The shape of the mirror curve and its coamoeba projection, as well as the corresponding Type IIB brane configuration and the toric phase of the 4d N=1 theory, all depend on the complex structure moduli parameterizing the mirror curve. We train a generative AI model, a conditional variational autoencoder (CVAE), that takes a choice of complex structure moduli as input and generates the corresponding tropical coamoeba. This enables us not only to obtain a high-resolution representation of the entire phase space for a family of brane tilings corresponding to the same toric Calabi-Yau 3-fold, but also to continuously track the movements of the mirror curve and individual branes in the corresponding Type IIB brane configurations during phase transitions associated with Seiberg duality.
Related papers
- Entanglement renormalization of fractonic anisotropic $\mathbb{Z}_N$ Laplacian models [4.68169911641046]
Gapped fracton phases constitute a new class of quantum states of matter which connects to topological orders but does not fit easily into existing paradigms.
We investigate the anisotropic $mathbbZ_N$ Laplacian model which can describe a family of fracton phases defined on arbitrary graphs.
arXiv Detail & Related papers (2024-09-26T18:36:23Z) - Unsupervised Machine Learning Techniques for Exploring Tropical
Coamoeba, Brane Tilings and Seiberg Duality [0.0]
We introduce unsupervised machine learning techniques in order to identify toric phases of 4d N=1 supersymmetric gauge theories.
These 4d N=1 supersymmetric gauge theories are world theories of a D3-brane probing a toric Calabi-Yau 3-fold.
arXiv Detail & Related papers (2023-09-11T18:00:01Z) - Realtime dynamics of hyperon spin correlations from string fragmentation
in a deformed four-flavor Schwinger model [0.0]
Self-polarizing weak decays of $Lambda$-hyperons provide insight into the role of entanglement in QCD strings.
We investigate the evolution of these correlations for different string configurations sensitive to the rich structure of the model Hamiltonian.
arXiv Detail & Related papers (2023-08-25T18:00:01Z) - Hadrons in (1+1)D Hamiltonian hardcore lattice QCD [0.0]
We study 2-flavor Hamiltonian lattice QCD in (1+1)D with hardcore gluons, at zero and finite density, by means of matrix product states.
We introduce a formulation of the theory where gauge redundancy is absent and construct a gauge invariant tensor network ansatz.
arXiv Detail & Related papers (2023-08-08T18:00:05Z) - Bulk-to-boundary anyon fusion from microscopic models [0.9207267819422787]
We study the fusion events between anyons in the bulk and at the boundary in fixed-point models of 2+1-dimensional non-chiral topological order.
A recurring theme in our construction is an isomorphism relating twisted cohomology groups to untwisted ones.
The results of this work can directly be applied to study logical operators in two-dimensional topological error correcting codes with boundaries described by a twisted gauge theory of a finite group.
arXiv Detail & Related papers (2023-02-03T16:20:36Z) - Penrose dodecahedron, Witting configuration and quantum entanglement [55.2480439325792]
A model with two entangled spin-3/2 particles based on geometry of dodecahedron was suggested by Roger Penrose.
The model was later reformulated using so-called Witting configuration with 40 rays in 4D Hilbert space.
Two entangled systems with quantum states described by Witting configurations are discussed in presented work.
arXiv Detail & Related papers (2022-08-29T14:46:44Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.