The Critical Canvas--How to regain information autonomy in the AI era
- URL: http://arxiv.org/abs/2411.16193v1
- Date: Mon, 25 Nov 2024 08:46:02 GMT
- Title: The Critical Canvas--How to regain information autonomy in the AI era
- Authors: Dong Chen,
- Abstract summary: The Critical Canvas is an information exploration platform designed to restore balance between algorithmic efficiency and human agency.
The platform transforms overwhelming technical information into actionable insights.
It enables more informed decision-making and effective policy development in the age of AI.
- Score: 11.15944540843097
- License:
- Abstract: In the era of AI, recommendation algorithms and generative AI challenge information autonomy by creating echo chambers and blurring the line between authentic and fabricated content. The Critical Canvas addresses these challenges with a novel information exploration platform designed to restore balance between algorithmic efficiency and human agency. It employs three key mechanisms: multi-dimensional exploration across logical, temporal, and geographical perspectives; dynamic knowledge entry generation to capture complex relationships between concepts; and a phase space to evaluate the credibility of both the content and its sources. Particularly relevant to technical AI governance, where stakeholders must navigate intricate specifications and safety frameworks, the platform transforms overwhelming technical information into actionable insights. The Critical Canvas empowers users to regain autonomy over their information consumption through structured yet flexible exploration pathways, creative visualization, human-centric navigation, and transparent source evaluation. It fosters a comprehensive understanding of nuanced topics, enabling more informed decision-making and effective policy development in the age of AI.
Related papers
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
Deepfakes and the spread of m/disinformation have emerged as formidable threats to the integrity of information ecosystems worldwide.
We highlight the mechanisms through which generative AI based on large models (LM-based GenAI) craft seemingly convincing yet fabricated contents.
We introduce an integrated framework that combines advanced detection algorithms, cross-platform collaboration, and policy-driven initiatives.
arXiv Detail & Related papers (2023-11-29T06:47:58Z) - Collectionless Artificial Intelligence [24.17437378498419]
This paper sustains the position that the time has come for thinking of new learning protocols.
Machines conquer cognitive skills in a truly human-like context centered on environmental interactions.
arXiv Detail & Related papers (2023-09-13T13:20:17Z) - Ethical Framework for Harnessing the Power of AI in Healthcare and
Beyond [0.0]
This comprehensive research article rigorously investigates the ethical dimensions intricately linked to the rapid evolution of AI technologies.
Central to this article is the proposition of a conscientious AI framework, meticulously crafted to accentuate values of transparency, equity, answerability, and a human-centric orientation.
The article unequivocally accentuates the pressing need for globally standardized AI ethics principles and frameworks.
arXiv Detail & Related papers (2023-08-31T18:12:12Z) - Requirements for Explainability and Acceptance of Artificial
Intelligence in Collaborative Work [0.0]
The present structured literature analysis examines the requirements for the explainability and acceptance of AI.
Results indicate that the two main groups of users are developers who require information about the internal operations of the model.
The acceptance of AI systems depends on information about the system's functions and performance, privacy and ethical considerations.
arXiv Detail & Related papers (2023-06-27T11:36:07Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC)
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
arXiv Detail & Related papers (2023-03-07T20:36:13Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Adaptive cognitive fit: Artificial intelligence augmented management of
information facets and representations [62.997667081978825]
Explosive growth in big data technologies and artificial intelligence [AI] applications have led to increasing pervasiveness of information facets.
Information facets, such as equivocality and veracity, can dominate and significantly influence human perceptions of information.
We suggest that artificially intelligent technologies that can adapt information representations to overcome cognitive limitations are necessary.
arXiv Detail & Related papers (2022-04-25T02:47:25Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Problems in AI research and how the SP System may help to solve them [0.0]
This paper describes problems in AI research and how the SP System may help to solve them.
Most of the problems are described by leading researchers in AI in interviews with science writer Martin Ford.
arXiv Detail & Related papers (2020-09-02T11:33:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.