論文の概要: Quadratic Gaussian Splatting for Efficient and Detailed Surface Reconstruction
- arxiv url: http://arxiv.org/abs/2411.16392v1
- Date: Mon, 25 Nov 2024 13:55:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:20:17.663720
- Title: Quadratic Gaussian Splatting for Efficient and Detailed Surface Reconstruction
- Title(参考訳): 表面改質を効率よく行う擬似ガウススメッティング法
- Authors: Ziyu Zhang, Binbin Huang, Hanqing Jiang, Liyang Zhou, Xiaojun Xiang, Shunhan Shen,
- Abstract要約: Quadratic Gaussian Splatting (QGS) は、円盤を二次曲面に置き換える新しい方法である。
QGSは、通常の一貫性項を導くために空間曲率を描画し、過剰な平滑化を効果的に低減する。
私たちのコードはオープンソースとしてリリースされます。
- 参考スコア(独自算出の注目度): 7.500927135156425
- License:
- Abstract: Recently, 3D Gaussian Splatting (3DGS) has attracted attention for its superior rendering quality and speed over Neural Radiance Fields (NeRF). To address 3DGS's limitations in surface representation, 2D Gaussian Splatting (2DGS) introduced disks as scene primitives to model and reconstruct geometries from multi-view images, offering view-consistent geometry. However, the disk's first-order linear approximation often leads to over-smoothed results. We propose Quadratic Gaussian Splatting (QGS), a novel method that replaces disks with quadric surfaces, enhancing geometric fitting, whose code will be open-sourced. QGS defines Gaussian distributions in non-Euclidean space, allowing primitives to capture more complex textures. As a second-order surface approximation, QGS also renders spatial curvature to guide the normal consistency term, to effectively reduce over-smoothing. Moreover, QGS is a generalized version of 2DGS that achieves more accurate and detailed reconstructions, as verified by experiments on DTU and TNT, demonstrating its effectiveness in surpassing current state-of-the-art methods in geometry reconstruction. Our code willbe released as open source.
- Abstract(参考訳): 近年,3D Gaussian Splatting (3DGS) はNeural Radiance Fields (NeRF) よりも優れたレンダリング品質と速度で注目されている。
表面表現における3DGSの限界に対処するため、2D Gaussian Splatting (2DGS)はディスクをシーンプリミティブとして導入した。
しかし、ディスクの1階線形近似はしばしば過度に滑らかな結果をもたらす。
そこで我々は,ディスクを2次曲面に置き換える新しい手法である Quadratic Gaussian Splatting (QGS) を提案する。
QGSは非ユークリッド空間におけるガウス分布を定義し、プリミティブはより複雑なテクスチャをキャプチャできる。
2階表面近似として、QGSは通常の一貫性項を導くために空間曲率を描画し、過度な平滑化を効果的に低減する。
さらに、QGSは2DGSの一般化版であり、DTUとTNTの実験によって検証され、幾何再構成における現在の最先端手法を上回る効果を示す。
私たちのコードはオープンソースとしてリリースされます。
関連論文リスト
- G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
G2SDFはニューラル暗黙の符号付き距離場をガウススプラッティングフレームワークに統合する新しいアプローチである。
G2SDFは, 3DGSの効率を維持しつつ, 従来よりも優れた品質を実現する。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2は大規模なシーン再構築のための新しいアプローチである。
分解段階の密度化・深さ回帰手法を実装し, ぼやけたアーチファクトを除去し, 収束を加速する。
本手法は, 視覚的品質, 幾何学的精度, ストレージ, トレーニングコストの両立を図っている。
論文 参考訳(メタデータ) (2024-11-01T17:59:31Z) - GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering [69.67264955234494]
GeoSplattingは、3DGSを明示的な幾何学的ガイダンスと微分可能なPBR方程式で拡張する新しいハイブリッド表現である。
多様なデータセットにわたる総合的な評価は、GeoSplattingの優位性を示している。
論文 参考訳(メタデータ) (2024-10-31T17:57:07Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) は、高品質でリアルタイムなレンダリングを実現するために、新しいビュー合成に非常に効果的であることが証明されている。
本研究は,DTUデータセット上のNeuraLangeloに匹敵するチャムファー距離誤差を導入し,元の3D GS法と同様の計算効率を維持する。
論文 参考訳(メタデータ) (2024-06-03T15:56:58Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。