論文の概要: Chat2SVG: Vector Graphics Generation with Large Language Models and Image Diffusion Models
- arxiv url: http://arxiv.org/abs/2411.16602v1
- Date: Mon, 25 Nov 2024 17:31:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:18:54.620878
- Title: Chat2SVG: Vector Graphics Generation with Large Language Models and Image Diffusion Models
- Title(参考訳): Chat2SVG: 大規模言語モデルと画像拡散モデルを用いたベクトルグラフ生成
- Authors: Ronghuan Wu, Wanchao Su, Jing Liao,
- Abstract要約: Chat2SVGは大規模言語モデルと画像拡散モデルを組み合わせたハイブリッドフレームワークである。
本システムにより,自然言語による直感的な編集が可能となり,プロのベクトルグラフィックス作成が可能となった。
- 参考スコア(独自算出の注目度): 14.917583676464266
- License:
- Abstract: Scalable Vector Graphics (SVG) has become the de facto standard for vector graphics in digital design, offering resolution independence and precise control over individual elements. Despite their advantages, creating high-quality SVG content remains challenging, as it demands technical expertise with professional editing software and a considerable time investment to craft complex shapes. Recent text-to-SVG generation methods aim to make vector graphics creation more accessible, but they still encounter limitations in shape regularity, generalization ability, and expressiveness. To address these challenges, we introduce Chat2SVG, a hybrid framework that combines the strengths of Large Language Models (LLMs) and image diffusion models for text-to-SVG generation. Our approach first uses an LLM to generate semantically meaningful SVG templates from basic geometric primitives. Guided by image diffusion models, a dual-stage optimization pipeline refines paths in latent space and adjusts point coordinates to enhance geometric complexity. Extensive experiments show that Chat2SVG outperforms existing methods in visual fidelity, path regularity, and semantic alignment. Additionally, our system enables intuitive editing through natural language instructions, making professional vector graphics creation accessible to all users.
- Abstract(参考訳): スケーラブルベクトルグラフィックス(SVG)は、デジタルデザインにおけるベクトルグラフィックスのデファクトスタンダードとなり、解像度独立性と個々の要素の正確な制御を提供する。
その利点にもかかわらず、プロの編集ソフトに技術的専門知識を必要とし、複雑な形を作るのにかなりの時間を費やしているため、高品質なSVGコンテンツを作成することは依然として困難である。
近年のテキストからSVG生成手法はベクトルグラフィックスの作成をより容易にすることを目的としているが、形状の正則性、一般化能力、表現性に制限がある。
これらの課題に対処するために,大言語モデル(LLM)の長所とテキスト間SVG生成のための画像拡散モデルを組み合わせたハイブリッドフレームワークChat2SVGを紹介する。
提案手法はまずLLMを用いて,基本的な幾何学的プリミティブから意味論的に意味のあるSVGテンプレートを生成する。
画像拡散モデルによって導かれる2段最適化パイプラインは、遅延空間の経路を洗練し、幾何学的複雑性を高めるために点座標を調整する。
広汎な実験により、Chat2SVGは視覚的忠実度、経路規則性、意味的アライメントにおいて既存の手法よりも優れていることが示された。
さらに,本システムでは,自然言語による直感的な編集が可能であり,すべてのユーザに対して,プロのベクトルグラフィックス作成を可能にする。
関連論文リスト
- Vector Grimoire: Codebook-based Shape Generation under Raster Image Supervision [20.325246638505714]
本稿では,GRIMOIREというテキスト誘導型生成モデルを紹介し,画像をベクトル形状に再構成して離散コードブックにマッピングする方法を提案する。
データから直接の監視を必要とする既存のモデルとは異なり、GRIMOIREはベクトル生成モデリングをはるかに多くのデータに開放するイメージ監督のみを使用して学習する。
論文 参考訳(メタデータ) (2024-10-08T12:41:31Z) - SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis [66.44553285020066]
SuperSVGは、高速かつ高精度な画像ベクトル化を実現するスーパーピクセルベースのベクトル化モデルである。
本稿では,2段階の自己学習フレームワークを提案する。そこでは,粗い段階モデルを用いて主構造を再構築し,細部を充実させるために改良段階モデルを用いる。
再現精度と推定時間の観点から, 最先端手法と比較して, 提案手法の優れた性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-06-14T07:43:23Z) - SVGDreamer: Text Guided SVG Generation with Diffusion Model [31.76771064173087]
SVGDreamerと呼ばれる新しいテキスト誘導ベクトルグラフィックス合成法を提案する。
SIVEプロセスは、前景オブジェクトと背景への合成の分解を可能にする。
VPSDアプローチは、形状の平滑化、彩度の過飽和、多様性の制限、収束の遅い問題に対処する。
論文 参考訳(メタデータ) (2023-12-27T08:50:01Z) - Beyond Pixels: Exploring Human-Readable SVG Generation for Simple Images
with Vision Language Models [19.145503353922038]
本稿では,Simple-SVG-Generation (Stextsuperscript2VGtextsuperscript2)を提案する。
本手法は,正確かつ簡便なSVGの生成と,人間の可読性と理解の整合性に重点を置いている。
その結果,従来のSVG生成手法よりも明らかに改善された結果が得られた。
論文 参考訳(メタデータ) (2023-11-27T05:20:11Z) - SAMVG: A Multi-stage Image Vectorization Model with the Segment-Anything
Model [59.40189857428461]
画像をSVG(Scalable Vector Graphics)にベクトル化する多段階モデルを提案する。
第一に、SAMVGはSegment-Anything Modelによって提供される一般的な画像セグメンテーションを使い、新しいフィルタリング手法を用いて画像全体の最も高密度なセグメンテーションマップを識別する。
次に、SAMVGは欠落したコンポーネントを特定し、SVGにより詳細なコンポーネントを追加する。
論文 参考訳(メタデータ) (2023-11-09T11:11:56Z) - Text-Guided Vector Graphics Customization [31.41266632288932]
テキストのプロンプトに基づいて高品質なベクトルグラフィックスを生成する新しいパイプラインを提案する。
提案手法は,大規模な事前学習されたテキスト・ツー・イメージ・モデルの能力を利用する。
我々は,ベクトルレベル,画像レベル,テキストレベルの観点から,複数の指標を用いて評価を行った。
論文 参考訳(メタデータ) (2023-09-21T17:59:01Z) - VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models [82.93345261434943]
画像の画素表現に基づいて訓練されたテキスト条件付き拡散モデルを用いて,SVG-exportable vector graphicsを生成する。
近年のテキスト・ツー・3D研究に触発されて,Score Distillation Smpling を用いたキャプションと整合したSVGを学習した。
実験では、以前の作品よりも品質が向上し、ピクセルアートやスケッチを含む様々なスタイルが示されている。
論文 参考訳(メタデータ) (2022-11-21T10:04:27Z) - Towards Layer-wise Image Vectorization [57.26058135389497]
画像をSVGに変換し,画像トポロジを同時に維持するためのレイヤワイズ画像ベクトル化(LIVE)を提案する。
Liveは、人間の視点にセマンティックに整合した階層構造を持つコンパクトなフォームを生成する。
Liveは、デザイナの両方のために編集可能なSVGを起動し、他のアプリケーションで使用することができる。
論文 参考訳(メタデータ) (2022-06-09T17:55:02Z) - SVG-Net: An SVG-based Trajectory Prediction Model [67.68864911674308]
シーン内の車両の動きを予想することは、安全な自動運転システムにとって重要な問題である。
この目的のために、シーンのインフラの理解は、しばしば将来の軌跡を予測する主要な手がかりである。
提案手法のほとんどが逆逆変換方式のシーンを表現しており、近年のアプローチではカスタムベクトル化方式が採用されている。
論文 参考訳(メタデータ) (2021-10-07T18:00:08Z) - DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation [217.86315551526235]
本稿では,複雑なSVGアイコンの生成と操作のために,DeepSVGと呼ばれる新しい階層型生成ネットワークを提案する。
我々のアーキテクチャは、その形状自体をエンコードする低レベルのコマンドから、効果的に高レベルの形状を分離します。
我々のネットワークは、多様なベクトルグラフィックスを正確に再構築し、強力なアニメーションツールとして機能することを実証する。
論文 参考訳(メタデータ) (2020-07-22T09:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。