論文の概要: CatNet: Controlling the False Discovery Rate in LSTM with SHAP Feature Importance and Gaussian Mirrors
- arxiv url: http://arxiv.org/abs/2411.16666v3
- Date: Wed, 04 Jun 2025 17:23:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 16:24:48.769487
- Title: CatNet: Controlling the False Discovery Rate in LSTM with SHAP Feature Importance and Gaussian Mirrors
- Title(参考訳): CatNet:SHAP特徴量とガウス鏡を用いたLSTMにおける偽発見率の制御
- Authors: Jiaan Han, Junxiao Chen, Yanzhe Fu,
- Abstract要約: CatNetはFalse Discovery Rate(FDR)を効果的に制御し、LSTMの重要な機能を選択する。
CatNetは特徴量の定量化にSHAP値の微分を用いており、ガウスミラーアルゴリズムを用いてFDR制御のためのベクトル形成ミラー統計学を構築している。
- 参考スコア(独自算出の注目度): 0.3277163122167434
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce CatNet, an algorithm that effectively controls False Discovery Rate (FDR) and selects significant features in LSTM. CatNet employs the derivative of SHAP values to quantify the feature importance, and constructs a vector-formed mirror statistic for FDR control with the Gaussian Mirror algorithm. To avoid instability due to nonlinear or temporal correlations among features, we also propose a new kernel-based independence measure. CatNet performs robustly on different model settings with both simulated and real-world data, which reduces overfitting and improves interpretability of the model. Our framework that introduces SHAP for feature importance in FDR control algorithms and improves Gaussian Mirror can be naturally extended to other time-series or sequential deep learning models.
- Abstract(参考訳): 本研究では,False Discovery Rate (FDR) を効果的に制御し,LSTMで重要な特徴を選択するアルゴリズムであるCatNetを紹介する。
CatNetは特徴量の定量化にSHAP値の微分を用いており、ガウスミラーアルゴリズムを用いてFDR制御のためのベクトル形成ミラー統計学を構築している。
特徴間の非線形あるいは時間的相関による不安定性を回避するため,新しいカーネルベース独立度尺度を提案する。
CatNetは、シミュレーションデータと実世界のデータの両方で異なるモデル設定で堅牢に動作し、過剰適合を低減し、モデルの解釈可能性を改善する。
FDR制御アルゴリズムの特徴としてSHAPを導入し,ガウスミラーを改良したフレームワークは,他の時系列や逐次ディープラーニングモデルに自然に拡張することができる。
関連論文リスト
- Network Resource Optimization for ML-Based UAV Condition Monitoring with Vibration Analysis [54.550658461477106]
条件監視(CM)は機械学習(ML)モデルを使用して異常および異常な条件を識別する。
本研究では,MLベースのUAV CMフレームワークにおけるネットワークリソースの最適化について検討する。
次元削減技術を活用することで、ネットワークリソース消費の99.9%が削減される。
論文 参考訳(メタデータ) (2025-02-21T14:36:12Z) - MM-RLHF: The Next Step Forward in Multimodal LLM Alignment [59.536850459059856]
MM-RLHF, $mathbf120k$ fine-fine, human-annotated preference comparison pairsを含むデータセットを紹介する。
本稿では,報酬モデルの品質向上とアライメントアルゴリズムの効率向上のために,いくつかの重要なイノベーションを提案する。
我々のアプローチは、$mathbf10$の異なる次元と$mathbf27$のベンチマークで厳格に評価されている。
論文 参考訳(メタデータ) (2025-02-14T18:59:51Z) - Rational Tuning of LLM Cascades via Probabilistic Modeling [0.9208007322096532]
大規模言語モデル(LLM)の連立性能分布の確率的モデルを提案する。
グリッドサーチを用いた信頼性閾値の選択と比較して,提案手法はカスケードの長さとコストエラー曲線の所望の解像度に関して,実行時のスケーリングを大幅に改善する。
論文 参考訳(メタデータ) (2025-01-16T07:58:33Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - 1D-CapsNet-LSTM: A Deep Learning-Based Model for Multi-Step Stock Index
Forecasting [6.05458608266581]
本研究では,多段階株価指数予測のためのLSTMネットワークに1D CapsNetを統合する可能性を検討する。
この目的のために、1D CapsNetを用いて高レベルのカプセルを生成するハイブリッド1D-CapsNet-LSTMモデルが導入された。
提案した1D-CapsNet-LSTMモデルは、ベースラインモデルを2つの重要な側面で一貫して上回っている。
論文 参考訳(メタデータ) (2023-10-03T14:33:34Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression [1.4528189330418977]
機械学習における不確実性推定は、予測モデルの信頼性と解釈可能性を高めるための最重要課題である。
画素ワイド回帰タスクに対するMIMO(Multiple-Input Multiple-Output)フレームワークの適応について述べる。
論文 参考訳(メタデータ) (2023-08-14T22:08:28Z) - Rewarded meta-pruning: Meta Learning with Rewards for Channel Pruning [19.978542231976636]
本稿では,ディープラーニングモデルにおける計算効率向上のためのパラメータとFLOPの削減手法を提案する。
本稿では,ネットワークの精度と計算効率のトレードオフを制御するために,精度と効率係数を導入する。
論文 参考訳(メタデータ) (2023-01-26T12:32:01Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
入力出力クエリの静的データセットからブラックボックス目的関数を最大化する入力を探索する問題を考える。
この問題を解決するための一般的なアプローチは、真の客観的関数を近似するプロキシモデルを維持することである。
ここでの大きな課題は、検索中に逆最適化された入力を避ける方法である。
論文 参考訳(メタデータ) (2021-10-27T05:37:12Z) - Robusta: Robust AutoML for Feature Selection via Reinforcement Learning [24.24652530951966]
強化学習(RL)に基づく初の堅牢なAutoMLフレームワークRobostaを提案します。
このフレームワークは,良性サンプルの競争精度を維持しつつ,モデルロバスト性を最大22%向上させることができることを示す。
論文 参考訳(メタデータ) (2021-01-15T03:12:29Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。