Recurrent Joint Embedding Predictive Architecture with Recurrent Forward Propagation Learning
- URL: http://arxiv.org/abs/2411.16695v1
- Date: Sun, 10 Nov 2024 01:40:42 GMT
- Title: Recurrent Joint Embedding Predictive Architecture with Recurrent Forward Propagation Learning
- Authors: Osvaldo M Velarde, Lucas C Parra,
- Abstract summary: We introduce a vision network inspired by biological principles.
The network learns by predicting the representation of the next image patch (fixation) based on the sequence of past fixations.
We also introduce emphRecurrent-Forward propagation, a learning algorithm that avoids biologically unrealistic backpropagation through time or memory-inefficient real-time recurrent learning.
- Score: 0.0
- License:
- Abstract: Conventional computer vision models rely on very deep, feedforward networks processing whole images and trained offline with extensive labeled data. In contrast, biological vision relies on comparatively shallow, recurrent networks that analyze sequences of fixated image patches, learning continuously in real-time without explicit supervision. This work introduces a vision network inspired by these biological principles. Specifically, it leverages a joint embedding predictive architecture incorporating recurrent gated circuits. The network learns by predicting the representation of the next image patch (fixation) based on the sequence of past fixations, a form of self-supervised learning. We show mathematical and empirically that the training algorithm avoids the problem of representational collapse. We also introduce \emph{Recurrent-Forward Propagation}, a learning algorithm that avoids biologically unrealistic backpropagation through time or memory-inefficient real-time recurrent learning. We show mathematically that the algorithm implements exact gradient descent for a large class of recurrent architectures, and confirm empirically that it learns efficiently. This paper focuses on these theoretical innovations and leaves empirical evaluation of performance in downstream tasks, and analysis of representational similarity with biological vision for future work.
Related papers
- Continually Learning Structured Visual Representations via Network Refinement with Rerelation [15.376349115976534]
Current machine learning paradigm relies on continuous representations like neural networks, which iteratively adjust parameters to approximate outcomes.
We propose a method that learns visual space in a structured, continual manner.
arXiv Detail & Related papers (2025-02-19T18:18:27Z) - Contrastive Representation Learning for Dynamic Link Prediction in Temporal Networks [1.9389881806157312]
We introduce a self-supervised method for learning representations of temporal networks.
We propose a recurrent message-passing neural network architecture for modeling the information flow over time-respecting paths of temporal networks.
The proposed method is tested on Enron, COLAB, and Facebook datasets.
arXiv Detail & Related papers (2024-08-22T22:50:46Z) - Understanding Self-Predictive Learning for Reinforcement Learning [61.62067048348786]
We study the learning dynamics of self-predictive learning for reinforcement learning.
We propose a novel self-predictive algorithm that learns two representations simultaneously.
arXiv Detail & Related papers (2022-12-06T20:43:37Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
We introduce the Gated Deep Linear Network framework that schematizes how pathways of information flow impact learning dynamics.
We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning.
Our work gives rise to general hypotheses relating neural architecture to learning and provides a mathematical approach towards understanding the design of more complex architectures.
arXiv Detail & Related papers (2022-07-21T12:01:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Wide Neural Networks Forget Less Catastrophically [39.907197907411266]
We study the impact of "width" of the neural network architecture on catastrophic forgetting.
We study the learning dynamics of the network from various perspectives.
arXiv Detail & Related papers (2021-10-21T23:49:23Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
Current state-of-the-art visual recognition systems rely on pretraining a neural network on a large-scale dataset and finetuning the network weights on a smaller dataset.
In this work, we prove that dynamically adapting network architectures tailored for each domain task along with weight finetuning benefits in both efficiency and effectiveness.
Our method can be easily generalized to an unsupervised paradigm by replacing supernet training with self-supervised learning in the source domain tasks and performing linear evaluation in the downstream tasks.
arXiv Detail & Related papers (2021-03-31T08:15:17Z) - On the Post-hoc Explainability of Deep Echo State Networks for Time
Series Forecasting, Image and Video Classification [63.716247731036745]
echo state networks have attracted many stares through time, mainly due to the simplicity and computational efficiency of their learning algorithm.
This work addresses this issue by conducting an explainability study of Echo State Networks when applied to learning tasks with time series, image and video data.
Specifically, the study proposes three different techniques capable of eliciting understandable information about the knowledge grasped by these recurrent models.
arXiv Detail & Related papers (2021-02-17T08:56:33Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.