論文の概要: Enhanced Confocal Laser Scanning Microscopy with Adaptive Physics Informed Deep Autoencoders
- arxiv url: http://arxiv.org/abs/2501.14709v1
- Date: Fri, 24 Jan 2025 18:32:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:55:50.171161
- Title: Enhanced Confocal Laser Scanning Microscopy with Adaptive Physics Informed Deep Autoencoders
- Title(参考訳): 適応型物理インフォームドディープオートエンコーダを用いた共焦点レーザー走査顕微鏡
- Authors: Zaheer Ahmad, Junaid Shabeer, Usman Saleem, Tahir Qadeer, Abdul Sami, Zahira El Khalidi, Saad Mehmood,
- Abstract要約: 共焦点レーザー走査顕微鏡の限界に対処する物理インフォームド・ディープラーニング・フレームワークを提案する。
このモデルは、畳み込み層と転置畳み込み層を用いて、ノイズの多い入力から高忠実度画像を再構成する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present a physics-informed deep learning framework to address common limitations in Confocal Laser Scanning Microscopy (CLSM), such as diffraction limited resolution, noise, and undersampling due to low laser power conditions. The optical system's point spread function (PSF) and common CLSM image degradation mechanisms namely photon shot noise, dark current noise, motion blur, speckle noise, and undersampling were modeled and were directly included into model architecture. The model reconstructs high fidelity images from heavily noisy inputs by using convolutional and transposed convolutional layers. Following the advances in compressed sensing, our approach significantly reduces data acquisition requirements without compromising image resolution. The proposed method was extensively evaluated on simulated CLSM images of diverse structures, including lipid droplets, neuronal networks, and fibrillar systems. Comparisons with traditional deconvolution algorithms such as Richardson-Lucy (RL), non-negative least squares (NNLS), and other methods like Total Variation (TV) regularization, Wiener filtering, and Wavelet denoising demonstrate the superiority of the network in restoring fine structural details with high fidelity. Assessment metrics like Structural Similarity Index (SSIM) and Peak Signal to Noise Ratio (PSNR), underlines that the AdaptivePhysicsAutoencoder achieved robust image enhancement across diverse CLSM conditions, helping faster acquisition, reduced photodamage, and reliable performance in low light and sparse sampling scenarios holding promise for applications in live cell imaging, dynamic biological studies, and high throughput material characterization.
- Abstract(参考訳): 本稿では,低レーザーパワー条件による回折制限分解能,雑音,アンダーサンプリングなど,共焦点レーザー走査顕微鏡(CLSM)の共通限界に対処する物理インフォームドディープラーニングフレームワークを提案する。
光システムの点展開機能(PSF)と一般的なCLSM画像劣化機構、すなわち光子ショットノイズ、ダーク電流ノイズ、モーションボケ、スペックルノイズ、アンダーサンプリングをモデル化し、モデルアーキテクチャに直接組み込んだ。
このモデルは、畳み込み層と転置畳み込み層を用いて、ノイズの多い入力から高忠実度画像を再構成する。
圧縮センシングの進歩に伴い,画像の解像度を損なうことなく,データの取得要求を大幅に削減する。
提案手法は, 脂質液滴, 神経ネットワーク, フィブリルシステムなど, 多様な構造のシミュレーションCLSM画像に対して広範囲に評価された。
Richardson-Lucy (RL) や非負の最小二乗法 (NNLS) といった従来のデコンボリューションアルゴリズムとの比較や、トータル変分法 (TV) 正則化、ウィナーフィルタ、ウェーブレット復号法などの手法は、ネットワークの優越性を高い忠実さで復元することを示した。
構造類似度指数 (SSIM) や Pak Signal to Noise Ratio (PSNR) などの評価指標は、AdaptivePhysics Autoencoder が様々なCLSM条件に対して堅牢な画像強調を実現し、より高速な取得、光損傷の低減、低照度およびスパースサンプリングシナリオにおける信頼性の高いパフォーマンスを実現し、ライブセルイメージング、動的生物学的研究、高スループットの材料特性評価に寄与していることを示している。
関連論文リスト
- Optimization of array encoding for ultrasound imaging [2.357055571094446]
機械学習(ML)を用いて、時間遅延とアポッド化重みによってパラメータ化されたスキャンシーケンスを構築し、高品質なBモード画像を生成する。
これらの結果は,ワイヤターゲットと組織模倣ファントムの両方で実験的に実証された。
論文 参考訳(メタデータ) (2024-03-01T05:19:59Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
高磁場, 高分解能, 高信号-雑音比 (SNR) 磁気共鳴イメージング (MRI) 画像を得るために, GAN (Cycle Consistent Generative Adversarial Network) が実装されている。
Denoising Autoencoder(DAE)とCycle-GANをペアとアンペアのケースで訓練するために画像が使用された。
この研究は、古典的DAEを上回り、低磁場MRI画像を改善することができ、画像ペアを必要としない生成的ディープラーニングモデルの使用を実証する。
論文 参考訳(メタデータ) (2023-07-12T00:01:00Z) - Fluctuation-based deconvolution in fluorescence microscopy using
plug-and-play denoisers [2.236663830879273]
蛍光顕微鏡で得られた生きた試料の画像の空間分解能は、可視光の回折により物理的に制限される。
この制限を克服するために、いくつかのデコンボリューションと超解像技術が提案されている。
論文 参考訳(メタデータ) (2023-03-20T15:43:52Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - Lightweight HDR Camera ISP for Robust Perception in Dynamic Illumination
Conditions via Fourier Adversarial Networks [35.532434169432776]
照明とノイズ除去の逐次的バランスをとる軽量な2段階画像強調アルゴリズムを提案する。
また、異なる照明条件下での一貫した画像強調のためのフーリエスペクトルベース対向フレームワーク(AFNet)を提案する。
また,定量的および定性的な評価に基づいて,画像強調技術が共通認識タスクの性能に与える影響について検討した。
論文 参考訳(メタデータ) (2022-04-04T18:48:51Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
そこで本研究では,収差画像とpsfマップを入力とし,レンズ固有深層プリエントを組み込んだ潜在高品質版を生成する,psf対応プラグイン・アンド・プレイ深層ネットワークを提案する。
具体的には、多彩なレンズの集合からベースモデルを事前訓練し、パラメータを迅速に精製して特定のレンズに適応させる。
論文 参考訳(メタデータ) (2021-04-07T12:00:38Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
単一画像スーパーレゾリューション (sisr) 法は, 推定劣化モデルが実画像から逸脱した場合はうまく動作しない。
本稿では, ランダムにシャッフルされたブラー, ダウンサンプリング, ノイズ劣化からなる, より複雑で実用的な劣化モデルを提案する。
論文 参考訳(メタデータ) (2021-03-25T17:40:53Z) - Convolutional Neural Network Denoising in Fluorescence Lifetime Imaging
Microscopy (FLIM) [16.558653673949838]
蛍光寿命イメージング顕微鏡(FLIM)システムは、その遅い処理速度、低信号対雑音比(SNR)、および高価で困難なハードウェアセットアップによって制限されています。
そこで本研究では,FLIM SNRを改善するために畳み込み畳み込みネットワークを適用した。
ネットワークは、アナログ信号処理に基づく高速なデータ取得、高効率パルス変調を用いた高SNR、オフザシェルフ無線周波数成分を用いたコスト効率実装を備えたインスタントFLIMシステムと統合される。
論文 参考訳(メタデータ) (2021-03-07T03:27:44Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - CNN-Based Image Reconstruction Method for Ultrafast Ultrasound Imaging [9.659642285903418]
超高速超音波(US)は、フルビューフレームを1kHz以上で取得できるバイオメディカルイメージングに革命をもたらした。
強い回折アーチファクトに悩まされ、主に格子状葉、サイドローブ、エッジウェーブによって引き起こされる。
本稿では,2段階の畳み込みニューラルネットワーク(CNN)を用いた画像再構成手法を提案する。
論文 参考訳(メタデータ) (2020-08-28T17:15:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。