論文の概要: Enhancing Fluorescence Lifetime Parameter Estimation Accuracy with Differential Transformer Based Deep Learning Model Incorporating Pixelwise Instrument Response Function
- arxiv url: http://arxiv.org/abs/2411.16896v2
- Date: Wed, 04 Dec 2024 19:02:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:37:51.353615
- Title: Enhancing Fluorescence Lifetime Parameter Estimation Accuracy with Differential Transformer Based Deep Learning Model Incorporating Pixelwise Instrument Response Function
- Title(参考訳): 画素楽器応答関数を組み込んだ微分変換器を用いたディープラーニングモデルによる蛍光寿命パラメータ推定精度の向上
- Authors: Ismail Erbas, Vikas Pandey, Navid Ibtehaj Nizam, Nanxue Yuan, Amit Verma, Margarida Barosso, Xavier Intes,
- Abstract要約: 蛍光ライフタイムイメージング(FLI)は、組織微小環境に関するユニークな情報を提供する。
近年のディープラーニングの進歩により、蛍光寿命パラメーターの推定が改善されている。
本稿では,実験的な光子時間ヒストグラムとともに,計装応答関数(IRF)を付加入力として統合した新しいDLアーキテクチャであるMFliNetを提案する。
- 参考スコア(独自算出の注目度): 0.3441582801949978
- License:
- Abstract: Fluorescence Lifetime Imaging (FLI) is a critical molecular imaging modality that provides unique information about the tissue microenvironment, which is invaluable for biomedical applications. FLI operates by acquiring and analyzing photon time-of-arrival histograms to extract quantitative parameters associated with temporal fluorescence decay. These histograms are influenced by the intrinsic properties of the fluorophore, instrument parameters, time-of-flight distributions associated with pixel-wise variations in the topographic and optical characteristics of the sample. Recent advancements in Deep Learning (DL) have enabled improved fluorescence lifetime parameter estimation. However, existing models are primarily designed for planar surface samples, limiting their applicability in translational scenarios involving complex surface profiles, such as \textit{in-vivo} whole-animal or imaged guided surgical applications. To address this limitation, we present MFliNet (Macroscopic FLI Network), a novel DL architecture that integrates the Instrument Response Function (IRF) as an additional input alongside experimental photon time-of-arrival histograms. Leveraging the capabilities of a Differential Transformer encoder-decoder architecture, MFliNet effectively focuses on critical input features, such as variations in photon time-of-arrival distributions. We evaluate MFliNet using rigorously designed tissue-mimicking phantoms and preclinical in-vivo cancer xenograft models. Our results demonstrate the model's robustness and suitability for complex macroscopic FLI applications, offering new opportunities for advanced biomedical imaging in diverse and challenging settings.
- Abstract(参考訳): 蛍光ライフタイムイメージング(FLI)は、組織微小環境に関するユニークな情報を提供する重要な分子イメージングモダリティである。
FLIは、時間的蛍光減衰に関連する定量的パラメータを抽出するために、光子時系列ヒストグラムを取得して解析する。
これらのヒストグラムはフルオロフォアの内在特性, 計器パラメータ, 試料の地形や光学特性の画素単位の変動に伴う飛行時間分布の影響を受けている。
近年のディープラーニング(DL)の進歩により、蛍光寿命パラメーターの推定が改善されている。
しかし、既存のモデルは、主に平面表面サンプルのために設計されており、例えば \textit{in-vivo} 全体アニマルや画像化されたガイド付き外科的応用のような複雑な表面プロファイルを含む翻訳シナリオにおける適用性を制限している。
この制限に対処するため,実験光子時間ヒストグラムとともに計装応答関数(IRF)を付加入力として統合した新しいDLアーキテクチャであるMFliNet(Macroscopic FLI Network)を提案する。
微分変換器エンコーダ・デコーダアーキテクチャの機能を活用して、MFliNetは光子時間分布の変動のような重要な入力機能に効果的にフォーカスする。
MFliNet は, 厳密に設計された組織模倣ファントムと前臨床内癌異種移植モデルを用いて評価した。
以上の結果から,複雑なマクロなFLIアプリケーションに対するモデルの堅牢性と適合性を実証し,多様な,困難な環境下での高度なバイオメディカルイメージングの新たな機会を提供する。
関連論文リスト
- Optimization of array encoding for ultrasound imaging [2.357055571094446]
機械学習(ML)を用いて、時間遅延とアポッド化重みによってパラメータ化されたスキャンシーケンスを構築し、高品質なBモード画像を生成する。
これらの結果は,ワイヤターゲットと組織模倣ファントムの両方で実験的に実証された。
論文 参考訳(メタデータ) (2024-03-01T05:19:59Z) - Coupling a Recurrent Neural Network to SPAD TCSPC Systems for Real-time
Fluorescence Lifetime Imaging [4.49533352963549]
近年,生物・医学研究における強力な診断技術として,蛍光寿命イメージング(FLI)が注目されている。
既存のFLIシステムは、処理速度、精度、堅牢性の間のトレードオフに悩まされることが多い。
精度を低下させることなく高速FLIを実現する頑健な手法を提案する。
論文 参考訳(メタデータ) (2023-06-27T16:37:37Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
機械学習は、大規模または高速に生成されたデータセットを含む研究を強化するために使用できる。
本研究では,X線反射法(XRR)のための閉ループワークフローへのMLの導入について述べる。
本研究では,ビームライン制御ソフトウェア環境に付加的なソフトウェア依存関係を導入することなく,実験中の基本データ解析をリアルタイムで行うソリューションを提案する。
論文 参考訳(メタデータ) (2023-06-20T21:21:19Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - Deep Learning Adapted Acceleration for Limited-view Photoacoustic
Computed Tomography [1.8830359888767887]
光音響計算トモグラフィ(PACT)は、PA信号検出のための超音波トランスデューサアレイでターゲットを照らすために、焦点のない大面積の光を使用する。
限定ビュー問題は、幾何学的条件の制限により、PACTの低画質の画像を引き起こす可能性がある。
数学的変動モデルとディープラーニングを組み合わせたモデルベース手法を提案する。
論文 参考訳(メタデータ) (2021-11-08T02:05:58Z) - Multi-StyleGAN: Towards Image-Based Simulation of Time-Lapse Live-Cell
Microscopy [23.720106678247888]
生体細胞の時間分解蛍光顕微鏡像をシミュレートする手法としてMulti-StyleGANを提案する。
この新規な生成逆ネットワークは連続した時間ステップのマルチドメイン配列を合成する。
このシミュレーションは、細胞の形態、成長、物理的相互作用、および蛍光レポータータンパク質の強度など、基礎となる生理的要因と時間的依存を捉えている。
論文 参考訳(メタデータ) (2021-06-15T16:51:16Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Learning to Model and Calibrate Optics via a Differentiable Wave Optics
Simulator [27.913052825303097]
実蛍光顕微鏡の微分可能計算モデルを構築するための学習に基づく新しい手法を提案する。
我々のモデルは、データサンプルから直接実際の光学装置を校正し、所望の入出力データを指定することで、ポイントスプレッド機能を構築するために使用できる。
論文 参考訳(メタデータ) (2020-05-18T10:23:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。