論文の概要: Semantic Data Augmentation for Long-tailed Facial Expression Recognition
- arxiv url: http://arxiv.org/abs/2411.17254v1
- Date: Tue, 26 Nov 2024 09:31:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:36:59.384537
- Title: Semantic Data Augmentation for Long-tailed Facial Expression Recognition
- Title(参考訳): 長期表情認識のための意味的データ拡張
- Authors: Zijian Li, Yan Wang, Bowen Guan, JianKai Yin,
- Abstract要約: 本稿では,表情認識のための新しい意味拡張手法を提案する。
私たちのメソッドは、FERタスクだけでなく、より多様なデータハングリーシナリオでも使用できます。
- 参考スコア(独自算出の注目度): 4.912577183275402
- License:
- Abstract: Facial Expression Recognition has a wide application prospect in social robotics, health care, driver fatigue monitoring, and many other practical scenarios. Automatic recognition of facial expressions has been extensively studied by the Computer Vision research society. But Facial Expression Recognition in real-world is still a challenging task, partially due to the long-tailed distribution of the dataset. Many recent studies use data augmentation for Long-Tailed Recognition tasks. In this paper, we propose a novel semantic augmentation method. By introducing randomness into the encoding of the source data in the latent space of VAE-GAN, new samples are generated. Then, for facial expression recognition in RAF-DB dataset, we use our augmentation method to balance the long-tailed distribution. Our method can be used in not only FER tasks, but also more diverse data-hungry scenarios.
- Abstract(参考訳): 表情認識は、社会ロボティクス、医療、運転疲労モニタリング、その他多くの実践的なシナリオにおいて幅広い応用の見通しを持っている。
表情の自動認識はコンピュータビジョン研究協会によって広く研究されている。
しかし、実世界の表情認識は、部分的にはデータセットの長い尾の分布のために、依然として難しい課題である。
近年の多くの研究では、Long-Tailed Recognitionタスクにデータ拡張を使用している。
本稿では,新しい意味拡張法を提案する。
VAE-GANの潜伏空間におけるソースデータの符号化にランダム性を導入することにより、新しいサンプルを生成する。
次に、RAF-DBデータセットにおける表情認識のために、長い尾の分布のバランスをとるために拡張法を用いる。
私たちのメソッドは、FERタスクだけでなく、より多様なデータハングリーシナリオでも使用できます。
関連論文リスト
- Balancing the Scales: Enhancing Fairness in Facial Expression Recognition with Latent Alignment [5.784550537553534]
このワークル平均は、表情認識システムにおけるバイアスを軽減するために、潜在空間に基づく表現学習を行う。
また、ディープラーニングモデルの公平性と全体的な正確性も向上する。
論文 参考訳(メタデータ) (2024-10-25T10:03:10Z) - Self-supervised Representation Learning From Random Data Projectors [13.764897214965766]
本稿では,任意のデータモダリティとネットワークアーキテクチャに適用可能なSSRL手法を提案する。
ランダムなデータプロジェクションを再構築することで,高品質なデータ表現が学習可能であることを示す。
論文 参考訳(メタデータ) (2023-10-11T18:00:01Z) - Exploring Large-scale Unlabeled Faces to Enhance Facial Expression
Recognition [12.677143408225167]
本研究では、ラベルのない顔データを用いて表現認識モデルを効果的に訓練する半教師付き学習フレームワークを提案する。
本手法では,顔認識データを完全に活用するために,信頼度を適応的に調整できる動的しきい値モジュールを用いる。
ABAW5 EXPRタスクでは,オフィシャル検証セットにおいて優れた結果を得た。
論文 参考訳(メタデータ) (2023-03-15T13:43:06Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Towards a General Deep Feature Extractor for Facial Expression
Recognition [5.012963825796511]
本稿では,他の顔の感情認識タスクやデータセットに適用可能な,視覚的特徴抽出器を学習する,新たなディープラーニングベースのアプローチを提案する。
DeepFEVERは、AffectNetとGoogle Facial Expression Comparisonデータセットで最先端の結果を上回っている。
論文 参考訳(メタデータ) (2022-01-19T18:42:23Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z) - Learning to Augment Expressions for Few-shot Fine-grained Facial
Expression Recognition [98.83578105374535]
顔表情データベースF2EDについて述べる。
顔の表情は119人から54人まで、200万枚以上の画像が含まれている。
実世界のシナリオでは,不均一なデータ分布やサンプルの欠如が一般的であるので,数発の表情学習の課題を評価する。
顔画像合成のための統合されたタスク駆動型フレームワークであるComposeal Generative Adversarial Network (Comp-GAN) 学習を提案する。
論文 参考訳(メタデータ) (2020-01-17T03:26:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。