論文の概要: Towards Intention Recognition for Robotic Assistants Through Online POMDP Planning
- arxiv url: http://arxiv.org/abs/2411.17326v1
- Date: Tue, 26 Nov 2024 11:13:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:33:59.116854
- Title: Towards Intention Recognition for Robotic Assistants Through Online POMDP Planning
- Title(参考訳): オンラインPOMDP計画によるロボットアシスタントの意図認識に向けて
- Authors: Juan Carlos Saborio, Joachim Hertzberg,
- Abstract要約: 意図認識は、人間の日常的なタスクを支援する自動アシスタントの設計と開発において重要な役割を果たす。
本稿では,オンラインの意図認識のための部分的に観測可能なモデルについて述べるとともに,予備的な実験結果を示すとともに,この問題のファミリに存在する課題について論じる。
- 参考スコア(独自算出の注目度): 2.693342141713236
- License:
- Abstract: Intention recognition, or the ability to anticipate the actions of another agent, plays a vital role in the design and development of automated assistants that can support humans in their daily tasks. In particular, industrial settings pose interesting challenges that include potential distractions for a decision-maker as well as noisy or incomplete observations. In such a setting, a robotic assistant tasked with helping and supporting a human worker must interleave information gathering actions with proactive tasks of its own, an approach that has been referred to as active goal recognition. In this paper we describe a partially observable model for online intention recognition, show some preliminary experimental results and discuss some of the challenges present in this family of problems.
- Abstract(参考訳): 意図認識(英: Intention recognition、または他のエージェントの行動を予測する能力)は、人間の日常的なタスクを支援する自動アシスタントの設計と開発において重要な役割を果たす。
特に、産業環境は、ノイズや不完全な観察だけでなく、意思決定者にとって潜在的に注意をそらすような興味深い課題を生んでいる。
このような状況下では、人間の作業を支援するロボットアシスタントは、情報収集行動のインターリーブを自身の積極的なタスクで行う必要があり、これはアクティブな目標認識と呼ばれるアプローチである。
本稿では,オンラインの意図認識のための部分的に観測可能なモデルについて述べるとともに,予備的な実験結果を示すとともに,この問題のファミリに存在する課題について論じる。
関連論文リスト
- A Survey on Complex Tasks for Goal-Directed Interactive Agents [60.53915548970061]
この調査は、目標指向の対話エージェントを評価するための、関連するタスクと環境をコンパイルする。
関連リソースの最新のコンパイルは、プロジェクトのWebサイトにある。
論文 参考訳(メタデータ) (2024-09-27T08:17:53Z) - A Multi-Modal Explainability Approach for Human-Aware Robots in Multi-Party Conversation [39.87346821309096]
本稿では,従来のSOTAと比較して性能が向上したアドレス推定モデルを提案する。
また、上記のアーキテクチャに説明可能性と透明性を組み込むいくつかの方法を提案する。
論文 参考訳(メタデータ) (2024-05-20T13:09:32Z) - Smart Help: Strategic Opponent Modeling for Proactive and Adaptive Robot Assistance in Households [30.33911147366425]
Smart Helpは、多様な障害を持つ人間のエージェントに対して、積極的にかつ適応的なサポートを提供することを目的としている。
本稿では,主エージェントの能力と目標の微妙な理解を提供する,イノベーティブな対戦相手モデリングモジュールを紹介する。
この結果から,AIを組み込んだ支援ロボットが,脆弱なグループの健康向上に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-13T13:03:59Z) - Self-Explainable Affordance Learning with Embodied Caption [63.88435741872204]
具体的キャプションを具現化したSelf-Explainable Affordance Learning (SEA)を紹介する。
SEAは、ロボットが意図を明確に表現し、説明可能な視覚言語キャプションと視覚能力学習のギャップを埋めることを可能にする。
本稿では, 簡便かつ効率的な方法で, 空き地と自己説明を効果的に組み合わせた新しいモデルを提案する。
論文 参考訳(メタデータ) (2024-04-08T15:22:38Z) - FollowMe: a Robust Person Following Framework Based on Re-Identification
and Gestures [12.850149165791551]
HRI(Human-robot Interaction)は、住宅や産業において、操作の柔軟性を促進するための重要な手段となっている。
本研究では,ロボットが対象者を識別・追跡できる統合認識・ナビゲーション・フレームワークを開発した。
Re-IDモジュールは、対象者の特徴を自律的に学習し、取得した知識を使用してターゲットを視覚的に再識別する。
論文 参考訳(メタデータ) (2023-11-21T20:59:27Z) - Continual Robot Learning using Self-Supervised Task Inference [19.635428830237842]
新しいタスクを継続的に学習するための自己教師型タスク推論手法を提案する。
我々は、行動マッチング型自己教師型学習目標を用いて、新しいタスク推論ネットワーク(TINet)を訓練する。
マルチタスクポリシはTINet上に構築され、タスクよりもパフォーマンスを最適化するために強化学習でトレーニングされている。
論文 参考訳(メタデータ) (2023-09-10T09:32:35Z) - Learning by Asking for Embodied Visual Navigation and Task Completion [20.0182240268864]
本稿では,タスク完了のための追加情報を動的に取得するために,いつ,どの質問をするかを学習するELBA(Embodied Learning-By-Asking)モデルを提案する。
実験結果から,ELBAは質問応答能力のないベースラインモデルに比べ,タスク性能の向上を図っている。
論文 参考訳(メタデータ) (2023-02-09T18:59:41Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
固有のモチベーションは、目標間のトレーニング時間を適切に割り当てるタスクに依存しないシグナルを生成することが証明されている。
内在的に動機付けられたオープンエンドラーニングの分野におけるほとんどの研究は、目標が互いに独立しているシナリオに焦点を当てているが、相互依存タスクの自律的な獲得を研究するのはごくわずかである。
特に,タスク間の関係に関する情報をアーキテクチャのより高レベルなレベルで組み込むことの重要性を示す。
そして、自律的に取得したシーケンスを格納する新しい学習層を追加することで、前者を拡張する新しいシステムであるH-GRAILを紹介する。
論文 参考訳(メタデータ) (2022-05-16T10:43:01Z) - Recent Advances in Leveraging Human Guidance for Sequential
Decision-Making Tasks [60.380501589764144]
人工知能の長年の目標は、シーケンシャルな意思決定を必要とするタスクを実行することを学ぶことができる人工知能を作ることである。
学習し行動する人工エージェントであるが、実行すべき特定のタスクを特定するのは人間次第である。
この調査は、主に人間のガイダンスに依存する5つの最近の機械学習フレームワークのハイレベルな概要を提供する。
論文 参考訳(メタデータ) (2021-07-13T03:11:04Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
我々は、AIエージェントでソーシャルインテリジェンスをテストするための課題であるWatch-And-Help(WAH)を紹介する。
WAHでは、AIエージェントは、人間のようなエージェントが複雑な家庭用タスクを効率的に実行するのを助ける必要がある。
マルチエージェントの家庭環境であるVirtualHome-Socialを構築し、計画と学習ベースのベースラインを含むベンチマークを提供する。
論文 参考訳(メタデータ) (2020-10-19T21:48:31Z) - LEMMA: A Multi-view Dataset for Learning Multi-agent Multi-task
Activities [119.88381048477854]
LEMMAデータセットを導入し、細心の注意深い設定で、行方不明な次元に対処するための単一の家を提供する。
我々は、人間と物体の相互作用による原子間相互作用を密に注釈し、日常の活動の構成性、スケジューリング、割り当ての土台として提供する。
この取り組みにより、マシンビジョンコミュニティは、目標指向の人間活動を調べ、現実世界におけるタスクのスケジューリングと割り当てをさらに研究できることを期待します。
論文 参考訳(メタデータ) (2020-07-31T00:13:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。