論文の概要: SpikeAtConv: An Integrated Spiking-Convolutional Attention Architecture for Energy-Efficient Neuromorphic Vision Processing
- arxiv url: http://arxiv.org/abs/2411.17439v1
- Date: Tue, 26 Nov 2024 13:57:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:36:46.355992
- Title: SpikeAtConv: An Integrated Spiking-Convolutional Attention Architecture for Energy-Efficient Neuromorphic Vision Processing
- Title(参考訳): SpikeAtConv:エネルギー効率の良いニューロモルフィック・ビジョン・プロセッシングのための統合スパイキング・進化型注意アーキテクチャ
- Authors: Wangdan Liao, Weidong Wang,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、従来の人工ニューラルネットワークに代わる生物学的にインスパイアされた代替手段を提供する。
SNNは、画像分類などの複雑な視覚的タスクにおいて、まだ競争力のある性能を達成できていない。
本研究では,有効性とタスク精度の向上を目的とした新しいSNNアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 11.687193535939798
- License:
- Abstract: Spiking Neural Networks (SNNs) offer a biologically inspired alternative to conventional artificial neural networks, with potential advantages in power efficiency due to their event-driven computation. Despite their promise, SNNs have yet to achieve competitive performance on complex visual tasks, such as image classification. This study introduces a novel SNN architecture designed to enhance computational efficacy and task accuracy. The architecture features optimized pulse modules that facilitate the processing of spatio-temporal patterns in visual data, aiming to reconcile the computational demands of high-level vision tasks with the energy-efficient processing of SNNs. Our evaluations on standard image classification benchmarks indicate that the proposed architecture narrows the performance gap with traditional neural networks, providing insights into the design of more efficient and capable neuromorphic computing systems.
- Abstract(参考訳): Spiking Neural Networks (SNN)は、従来の人工ニューラルネットワークに代わる生物学的にインスパイアされた代替手段を提供する。
彼らの約束にもかかわらず、SNNは画像分類のような複雑な視覚的タスクにおいて、まだ競争力のあるパフォーマンスを達成できていない。
本研究では,計算効率とタスク精度の向上を目的とした新しいSNNアーキテクチャを提案する。
このアーキテクチャは、高レベルの視覚タスクの計算要求をSNNのエネルギー効率のよい処理と整合させることを目的として、視覚データにおける時空間パターンの処理を容易にする最適化されたパルスモジュールを備えている。
標準画像分類ベンチマークによる評価は,提案アーキテクチャが従来のニューラルネットワークとの性能ギャップを狭め,より効率的で有能なニューロモルフィックコンピューティングシステムの設計に関する洞察を与えることを示している。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Sparsity-Aware Hardware-Software Co-Design of Spiking Neural Networks: An Overview [1.0499611180329804]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークのスパースでイベント駆動的な性質にインスパイアされ、超低消費電力人工知能の可能性を秘めている。
スパースSNNのハードウェア・ソフトウェア共同設計について検討し,スパース表現,ハードウェアアーキテクチャ,トレーニング技術がハードウェア効率に与える影響について検討する。
本研究の目的は,スパースSNNの計算的優位性をフル活用した,組込みニューロモルフィックシステムへの道筋を解明することである。
論文 参考訳(メタデータ) (2024-08-26T17:22:11Z) - The Potential of Combined Learning Strategies to Enhance Energy Efficiency of Spiking Neuromorphic Systems [0.0]
この原稿は、畳み込みスパイキングニューラルネットワーク(CSNN)のための新しい複合学習アプローチを通じて、脳にインスパイアされた知覚コンピュータマシンの強化に焦点を当てている。
CSNNは、人間の脳にインスパイアされたエネルギー効率の良いスパイクニューロン処理を提供する、バックプロパゲーションのような従来のパワー集約的で複雑な機械学習手法に代わる、有望な代替手段を提供する。
論文 参考訳(メタデータ) (2024-08-13T18:40:50Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングの最前線である。
本稿では,SNNのパフォーマンスに革命をもたらす3つの画期的な研究をまとめる。
論文 参考訳(メタデータ) (2024-07-08T23:33:12Z) - Free-Space Optical Spiking Neural Network [0.0]
自由空間光深絞り畳み込みニューラルネットワーク(OSCNN)について紹介する。
この手法は人間の眼の計算モデルからインスピレーションを得ている。
以上の結果から,電子的ONNと比較して,レイテンシと消費電力を最小に抑えた有望な性能を示す。
論文 参考訳(メタデータ) (2023-11-08T09:41:14Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - HyNNA: Improved Performance for Neuromorphic Vision Sensor based
Surveillance using Hybrid Neural Network Architecture [7.293414498855147]
領域提案のための形態素画像処理アルゴリズムを用いて,最近提案されたハイブリッドイベントフレームアプローチを改善した。
また、様々な畳み込みニューラルネットワーク(CNN)アーキテクチャを探索することにより、オブジェクト検出と分類の低消費電力要求にも対処する。
具体的には、対象検出フレームワークから得られた結果を最先端の低出力NVS監視システムと比較し、63.1%から82.16%の改善精度を示した。
論文 参考訳(メタデータ) (2020-03-19T07:18:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。