論文の概要: RealSeal: Revolutionizing Media Authentication with Real-Time Realism Scoring
- arxiv url: http://arxiv.org/abs/2411.17684v1
- Date: Tue, 26 Nov 2024 18:48:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:36:16.258254
- Title: RealSeal: Revolutionizing Media Authentication with Real-Time Realism Scoring
- Title(参考訳): RealSeal: リアルタイムリアリズムによるメディア認証の革命
- Authors: Bhaktipriya Radharapu, Harish Krishna,
- Abstract要約: 既存の合成データの透かし方法は、簡単に取り除いたり、変更したりできるため、不足している。
コンテンツオリジンの検証にメタデータに依存するプロヴァンステクニックは、ステージドメディアやフェイクメディアの根本的な問題に対処できない。
本稿では,メディア認証における画期的なパラダイムシフトについて紹介する。
- 参考スコア(独自算出の注目度): 0.27624021966289597
- License:
- Abstract: The growing threat of deepfakes and manipulated media necessitates a radical rethinking of media authentication. Existing methods for watermarking synthetic data fall short, as they can be easily removed or altered, and current deepfake detection algorithms do not achieve perfect accuracy. Provenance techniques, which rely on metadata to verify content origin, fail to address the fundamental problem of staged or fake media. This paper introduces a groundbreaking paradigm shift in media authentication by advocating for the watermarking of real content at its source, as opposed to watermarking synthetic data. Our innovative approach employs multisensory inputs and machine learning to assess the realism of content in real-time and across different contexts. We propose embedding a robust realism score within the image metadata, fundamentally transforming how images are trusted and circulated. By combining established principles of human reasoning about reality, rooted in firmware and hardware security, with the sophisticated reasoning capabilities of contemporary machine learning systems, we develop a holistic approach that analyzes information from multiple perspectives. This ambitious, blue sky approach represents a significant leap forward in the field, pushing the boundaries of media authenticity and trust. By embracing cutting-edge advancements in technology and interdisciplinary research, we aim to establish a new standard for verifying the authenticity of digital media.
- Abstract(参考訳): ディープフェイクやメディア操作の脅威は、メディア認証を根本的に再考する必要がある。
既存の合成データの透かし方法は、容易に取り外しや変更が可能であり、現在のディープフェイク検出アルゴリズムは完全な精度が得られないため、短くなる。
コンテンツオリジンの検証にメタデータに依存するプロヴァンステクニックは、ステージドメディアやフェイクメディアの根本的な問題に対処できない。
本稿では,メディア認証における画期的なパラダイムシフトについて紹介する。
私たちの革新的なアプローチは、リアルタイムおよび異なるコンテキストにおけるコンテンツのリアリズムを評価するために、多感覚入力と機械学習を採用しています。
本稿では、画像メタデータにロバストなリアリズムスコアを埋め込んで、画像の信頼性と循環の仕方を根本的に変えることを提案する。
ファームウェアとハードウェアセキュリティに根ざした、現実に関する人間の推論の確立された原則と、現代の機械学習システムの洗練された推論能力を組み合わせることで、複数の視点から情報を分析する包括的なアプローチを開発する。
この野心的な青い空のアプローチは、メディアの真正性と信頼の境界を押し進め、この分野における大きな飛躍を表している。
技術と学際研究の最先端の進歩を取り入れることで、デジタルメディアの真正性を検証するための新しい標準を確立することを目指している。
関連論文リスト
- Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AIが生成する合成メディア、別名Deepfakesは、エンターテイメントからサイバーセキュリティまで、多くの領域に影響を与えている。
ディープフェイク検出は、微妙な矛盾やアーティファクトを機械学習技術で識別することに焦点を当て、研究の不可欠な領域となっている。
本稿では,これらの課題に対処する主要なアルゴリズムについて,その利点,限界,今後の展望について検討する。
論文 参考訳(メタデータ) (2024-08-01T08:57:47Z) - Solutions to Deepfakes: Can Camera Hardware, Cryptography, and Deep Learning Verify Real Images? [51.3344199560726]
信頼性の高い合成データから実際のデータを分離する手法を確立することが不可欠である。
この文書は、どの画像が本物かを検証するために使用できる検出と暗号に関する既知の戦略を提示することを目的としている。
論文 参考訳(メタデータ) (2024-07-04T22:01:21Z) - Text-image guided Diffusion Model for generating Deepfake celebrity
interactions [50.37578424163951]
拡散モデルは近年、非常にリアルなビジュアルコンテンツ生成を実証している。
本稿では,その点において新しい手法を考案し,検討する。
提案手法により, 現実感を脅かすことなく, 偽の視覚コンテンツを作成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-26T08:24:37Z) - Comparative Analysis of Deep-Fake Algorithms [0.0]
ディープフェイク(Deepfakes)は、ディープラーニングベースのフェイクビデオとしても知られており、近年大きな関心を集めている。
これらのディープフェイクビデオは、誤った情報を広めたり、個人を偽装したり、フェイクニュースを作るといった悪質な目的で使用することができる。
ディープフェイク検出技術は、顔認識、モーション分析、音声と視覚の同期といった様々なアプローチを使用する。
論文 参考訳(メタデータ) (2023-09-06T18:17:47Z) - The Age of Synthetic Realities: Challenges and Opportunities [85.058932103181]
我々は、有害な合成生成を識別し、それらを現実と区別することのできる法医学的手法の開発における重要な必要性を強調した。
我々の焦点は、画像、ビデオ、オーディオ、テキストなどの様々なメディアの形式にまで及んでいる。
この研究は、AI生成技術の急速な進歩と、法科学の基本原理に対する影響により、最も重要である。
論文 参考訳(メタデータ) (2023-06-09T15:55:10Z) - Leveraging Deep Learning Approaches for Deepfake Detection: A Review [0.0]
ディープフェイク(Deepfakes)は、AIによって生成されたメディアであり、実際のメディアから切り離すことが難しい。
本稿では,コスト効率のよいモデルを実現するために,様々な手法を検討することを目的とする。
論文 参考訳(メタデータ) (2023-04-04T16:04:42Z) - Fighting Malicious Media Data: A Survey on Tampering Detection and
Deepfake Detection [115.83992775004043]
近年のディープラーニング、特に深層生成モデルの発展により、知覚的に説得力のある画像や動画を低コストで制作するための扉が開かれた。
本稿では,現在のメディアタンパリング検出手法を概観し,今後の研究の課題と動向について論じる。
論文 参考訳(メタデータ) (2022-12-12T02:54:08Z) - Are GAN generated images easy to detect? A critical analysis of the
state-of-the-art [22.836654317217324]
フォトリアリズムのレベルが高まるにつれて、合成媒体は実物とほとんど区別できないようになっている。
合成媒体を安定かつタイムリーに検出する自動ツールを開発することが重要である。
論文 参考訳(メタデータ) (2021-04-06T15:54:26Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z) - Media Forensics and DeepFakes: an overview [12.333160116225445]
リアルメディアと合成メディアの境界は非常に薄くなっている。
ディープフェイクは選挙中に世論を操ったり、詐欺を犯したり、軽視したり、脅迫したりするのに使われる。
偽マルチメディアコンテンツを検出する自動化ツールが緊急に必要である。
論文 参考訳(メタデータ) (2020-01-18T00:13:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。