RealSeal: Revolutionizing Media Authentication with Real-Time Realism Scoring
- URL: http://arxiv.org/abs/2411.17684v1
- Date: Tue, 26 Nov 2024 18:48:23 GMT
- Title: RealSeal: Revolutionizing Media Authentication with Real-Time Realism Scoring
- Authors: Bhaktipriya Radharapu, Harish Krishna,
- Abstract summary: Existing methods for watermarking synthetic data fall short, as they can be easily removed or altered.
Provenance techniques, which rely on metadata to verify content origin, fail to address the fundamental problem of staged or fake media.
This paper introduces a groundbreaking paradigm shift in media authentication by advocating for the watermarking of real content at its source.
- Score: 0.27624021966289597
- License:
- Abstract: The growing threat of deepfakes and manipulated media necessitates a radical rethinking of media authentication. Existing methods for watermarking synthetic data fall short, as they can be easily removed or altered, and current deepfake detection algorithms do not achieve perfect accuracy. Provenance techniques, which rely on metadata to verify content origin, fail to address the fundamental problem of staged or fake media. This paper introduces a groundbreaking paradigm shift in media authentication by advocating for the watermarking of real content at its source, as opposed to watermarking synthetic data. Our innovative approach employs multisensory inputs and machine learning to assess the realism of content in real-time and across different contexts. We propose embedding a robust realism score within the image metadata, fundamentally transforming how images are trusted and circulated. By combining established principles of human reasoning about reality, rooted in firmware and hardware security, with the sophisticated reasoning capabilities of contemporary machine learning systems, we develop a holistic approach that analyzes information from multiple perspectives. This ambitious, blue sky approach represents a significant leap forward in the field, pushing the boundaries of media authenticity and trust. By embracing cutting-edge advancements in technology and interdisciplinary research, we aim to establish a new standard for verifying the authenticity of digital media.
Related papers
- Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AI-generated synthetic media, also called Deepfakes, have influenced so many domains, from entertainment to cybersecurity.
Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques.
This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
arXiv Detail & Related papers (2024-08-01T08:57:47Z) - Solutions to Deepfakes: Can Camera Hardware, Cryptography, and Deep Learning Verify Real Images? [51.3344199560726]
It is imperative to establish methods that can separate real data from synthetic data with high confidence.
This document aims to: present known strategies in detection and cryptography that can be employed to verify which images are real.
arXiv Detail & Related papers (2024-07-04T22:01:21Z) - Text-image guided Diffusion Model for generating Deepfake celebrity
interactions [50.37578424163951]
Diffusion models have recently demonstrated highly realistic visual content generation.
This paper devises and explores a novel method in that regard.
Our results show that with the devised scheme, it is possible to create fake visual content with alarming realism.
arXiv Detail & Related papers (2023-09-26T08:24:37Z) - Comparative Analysis of Deep-Fake Algorithms [0.0]
Deepfakes, also known as deep learning-based fake videos, have become a major concern in recent years.
These deepfake videos can be used for malicious purposes such as spreading misinformation, impersonating individuals, and creating fake news.
Deepfake detection technologies use various approaches such as facial recognition, motion analysis, and audio-visual synchronization.
arXiv Detail & Related papers (2023-09-06T18:17:47Z) - The Age of Synthetic Realities: Challenges and Opportunities [85.058932103181]
We highlight the crucial need for the development of forensic techniques capable of identifying harmful synthetic creations and distinguishing them from reality.
Our focus extends to various forms of media, such as images, videos, audio, and text, as we examine how synthetic realities are crafted and explore approaches to detecting these malicious creations.
This study is of paramount importance due to the rapid progress of AI generative techniques and their impact on the fundamental principles of Forensic Science.
arXiv Detail & Related papers (2023-06-09T15:55:10Z) - Leveraging Deep Learning Approaches for Deepfake Detection: A Review [0.0]
Deepfakes are fabricated media generated by AI that are difficult to set apart from the real media.
This paper aims to explore different methodologies with an intention to achieve a cost-effective model.
arXiv Detail & Related papers (2023-04-04T16:04:42Z) - Fighting Malicious Media Data: A Survey on Tampering Detection and
Deepfake Detection [115.83992775004043]
Recent advances in deep learning, particularly deep generative models, open the doors for producing perceptually convincing images and videos at a low cost.
This paper provides a comprehensive review of the current media tampering detection approaches, and discusses the challenges and trends in this field for future research.
arXiv Detail & Related papers (2022-12-12T02:54:08Z) - Are GAN generated images easy to detect? A critical analysis of the
state-of-the-art [22.836654317217324]
With the increased level of photorealism, synthetic media are becoming hardly distinguishable from real ones.
It is important to develop automated tools to reliably and timely detect synthetic media.
arXiv Detail & Related papers (2021-04-06T15:54:26Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z) - Media Forensics and DeepFakes: an overview [12.333160116225445]
The boundary between real and synthetic media has become very thin.
Deepfakes can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people.
There is an urgent need for automated tools capable of detecting false multimedia content.
arXiv Detail & Related papers (2020-01-18T00:13:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.