Finding "Good Views" of Electrocardiogram Signals for Inferring Abnormalities in Cardiac Condition
- URL: http://arxiv.org/abs/2411.17702v1
- Date: Mon, 11 Nov 2024 18:12:02 GMT
- Title: Finding "Good Views" of Electrocardiogram Signals for Inferring Abnormalities in Cardiac Condition
- Authors: Hyewon Jeong, Suyeol Yun, Hammaad Adam,
- Abstract summary: Recent work has established that it is possible to detect arrhythmia directly from the ECG signal using deep learning algorithms.
We investigate several ways to define positive samples, and assess which approach yields best performance in a downstream task classifying arrhythmia.
- Score: 1.702954408126291
- License:
- Abstract: Electrocardiograms (ECGs) are an established technique to screen for abnormal cardiac signals. Recent work has established that it is possible to detect arrhythmia directly from the ECG signal using deep learning algorithms. While a few prior approaches with contrastive learning have been successful, the best way to define a positive sample remains an open question. In this project, we investigate several ways to define positive samples, and assess which approach yields the best performance in a downstream task of classifying arrhythmia. We explore spatiotemporal invariances, generic augmentations, demographic similarities, cardiac rhythms, and wave attributes of ECG as potential ways to match positive samples. We then evaluate each strategy with downstream task performance, and find that learned representations invariant to patient identity are powerful in arrhythmia detection. We made our code available in: https://github.com/mandiehyewon/goodviews_ecg.git
Related papers
- AnyECG: Foundational Models for Electrocardiogram Analysis [36.53693619144332]
Electrocardiogram (ECG) is highly sensitive in detecting acute heart attacks.
This paper introduces AnyECG, a foundational model designed to extract robust representations from any real-world ECG data.
Experimental results in anomaly detection, arrhythmia detection, corrupted lead generation, and ultra-long ECG signal analysis demonstrate that AnyECG learns common ECG knowledge from data and significantly outperforms cutting-edge methods in each respective task.
arXiv Detail & Related papers (2024-11-17T17:32:58Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Deciphering Heartbeat Signatures: A Vision Transformer Approach to Explainable Atrial Fibrillation Detection from ECG Signals [4.056982620027252]
We develop a vision transformer approach to identify atrial fibrillation based on single-lead ECG data.
A residual network (ResNet) approach is also developed for comparison with the vision transformer approach.
arXiv Detail & Related papers (2024-02-12T11:04:08Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Two-stream Network for ECG Signal Classification [3.222802562733787]
This paper explores an effective algorithm for automatic classifications of multi-classes of heartbeat types based on ECG.
A two-stream architecture is used in this paper and presents an enhanced version of ECG recognition based on this.
Results on the MIT-BIH Arrhythmia Database demonstrate that the proposed algorithm performs an accuracy of 99.38%.
arXiv Detail & Related papers (2022-10-05T08:14:51Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm.
A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested.
arXiv Detail & Related papers (2022-08-29T05:01:04Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
We propose Attention-Based Convolutional Neural Networks (ABCNN) to work on the raw ECG signals and automatically extract the informative dependencies for accurate arrhythmia detection.
Our main task is to find the arrhythmia from normal heartbeats and, at the meantime, accurately recognize the heart diseases from five arrhythmia types.
The experimental results show that the proposed ABCNN outperforms the widely used baselines.
arXiv Detail & Related papers (2021-08-18T14:55:46Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
We present a three-stage process for analysing Holter recordings with robustness to noisy signal.
First stage is a segmentation neural network (NN) with gradientdecoder architecture which detects positions of heartbeats.
Second stage is a classification NN which will classify heartbeats as wide or narrow.
Third stage is a boosting decision trees (GBDT) on top of NN features that incorporates patient-wise features.
arXiv Detail & Related papers (2020-11-17T16:15:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.