論文の概要: A Composite Fault Diagnosis Model for NPPs Based on Bayesian-EfficientNet Module
- arxiv url: http://arxiv.org/abs/2411.17707v1
- Date: Wed, 13 Nov 2024 02:53:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-01 04:42:45.604342
- Title: A Composite Fault Diagnosis Model for NPPs Based on Bayesian-EfficientNet Module
- Title(参考訳): Bayesian-EfficientNetモジュールに基づくNPPの複合的故障診断モデル
- Authors: Siwei Li, Jiangwen Chen, Hua Lin, Wei Wang,
- Abstract要約: データ駆動型深層学習故障診断技術を用いたベイズアルゴリズムと有効ネット大モデルに基づく複合マルチフォールト診断モデルを提案する。
本研究の目的は,原子力プラントシナリオにおける伝達学習を通じて,自動深層学習に基づく大規模モデル技術の有効性を評価することである。
- 参考スコア(独自算出の注目度): 3.766420709490079
- License:
- Abstract: This article focuses on the faults of important mechanical components such as pumps, valves, and pipelines in the reactor coolant system, main steam system, condensate system, and main feedwater system of nuclear power plants (NPPs). It proposes a composite multi-fault diagnosis model based on Bayesian algorithm and EfficientNet large model using data-driven deep learning fault diagnosis technology. The aim is to evaluate the effectiveness of automatic deep learning-based large model technology through transfer learning in nuclear power plant scenarios.
- Abstract(参考訳): 本稿では, 原子炉冷却材システム, 主蒸気システム, 凝縮システム, 原子力プラントの主給水システム(NPP)における, ポンプ, バルブ, パイプラインなどの重要な機械部品の故障について述べる。
データ駆動型ディープラーニング断層診断技術を用いたベイジアンアルゴリズムと有効ネット大モデルに基づく複合マルチフォールト診断モデルを提案する。
本研究の目的は,原子力プラントシナリオにおける伝達学習を通じて,自動深層学習に基づく大規模モデル技術の有効性を評価することである。
関連論文リスト
- Research on fault diagnosis of nuclear power first-second circuit based on hierarchical multi-granularity classification network [0.14183971140167245]
本稿では、AP1000のフルスケールシミュレータを用いて、原子力ユニットにおける重要なシステムの重要な機械的コンポーネントの故障をシミュレートする。
EfficientNet大モデルに基づく階層型多重粒度分類故障診断モデルを提案する。
その結果, 提案した故障診断モデルは, 原子力ユニットの異なる回路およびシステム構成部品の故障を階層的分類に効果的に分類できることが示唆された。
論文 参考訳(メタデータ) (2024-11-12T00:38:17Z) - Online Multi-modal Root Cause Analysis [61.94987309148539]
ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
既存のオンラインRCAメソッドは、マルチモーダルシステムにおける複雑な相互作用を見渡す単一モーダルデータのみを処理する。
OCEANは、根本原因の局在化のための新しいオンラインマルチモーダル因果構造学習手法である。
論文 参考訳(メタデータ) (2024-10-13T21:47:36Z) - Space-scale Exploration of the Poor Reliability of Deep Learning Models: the Case of the Remote Sensing of Rooftop Photovoltaic Systems [0.7499722271664147]
ディープラーニングを用いた屋上PVシステムのリモートセンシングが有望なソリューションとして浮上した。
既存の技術は、屋上PVの最新の統計を構築するのに十分な信頼性を持っていない。
本研究では,屋上PVパネルの検出を訓練したディープラーニングモデルの分類精度に及ぼす分布シフトの影響を網羅的に評価する。
論文 参考訳(メタデータ) (2024-07-31T14:34:18Z) - Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
本稿では,物理インフォームド・コンボリューション・オートエンコーダ(PIConvAE)モデルを提案する。
提案モデルの性能評価は,カリフォルニア州リバーサイドのIEEE 123バスシステムと実世界の給電システムを用いて行った。
論文 参考訳(メタデータ) (2024-06-05T04:28:57Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
論文 参考訳(メタデータ) (2024-04-02T10:19:04Z) - A Framework for Strategic Discovery of Credible Neural Network Surrogate Models under Uncertainty [0.0]
本研究では,Occam Plausibility Algorithm for surrogate model (OPAL-surrogate)を提案する。
OPAL-surrogateは、予測ニューラルネットワークベースのサロゲートモデルを明らかにするための、体系的なフレームワークを提供する。
モデルの複雑さ、正確性、予測の不確実性の間のトレードオフをバランスさせる。
論文 参考訳(メタデータ) (2024-03-13T18:45:51Z) - Integrating LLMs for Explainable Fault Diagnosis in Complex Systems [0.0]
本稿では,原子力プラントなどの複雑なシステムにおける故障診断の説明可能性を高めるための統合システムを提案する。
物理に基づく診断ツールとLarge Language Modelを組み合わせることで、障害を識別するだけでなく、その原因と意味を明確かつ理解可能な説明を提供する新しいソリューションを提供する。
論文 参考訳(メタデータ) (2024-02-08T22:11:21Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
人為的なシステムのレジリエンスを、予期せぬ事象に対して向上させるためのエンドツーエンドのフレームワークを実証する。
このフレームワークは物理ベースのデジタルツインモデルと,リアルタイム故障診断,予後,再構成を行う3つのモジュールに基づいている。
論文 参考訳(メタデータ) (2022-08-30T20:16:17Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
データ駆動型故障診断・隔離方式は, 燃料供給システムにおける故障とセンサ測定のために, 明確に開発されている。
モデルは機械学習の分類器を使用してトレーニングされ、トレーニングされた障害シナリオのセットをリアルタイムで検出する。
提案手法の利点, 性能, 性能を実証し, 実証するために, いくつかのシミュレーション実験を行った。
論文 参考訳(メタデータ) (2021-10-17T13:42:37Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - High-Fidelity Machine Learning Approximations of Large-Scale Optimal
Power Flow [49.2540510330407]
AC-OPFは、多くの電力システムアプリケーションにおいて重要なビルディングブロックである。
本稿では, 再生可能エネルギーの普及にともなって, AC-OPFの効率的な近似を実現するための深層学習について検討する。
論文 参考訳(メタデータ) (2020-06-29T20:22:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。