論文の概要: EQNN: Enhanced Quantum Neural Network
- arxiv url: http://arxiv.org/abs/2411.17726v2
- Date: Thu, 28 Nov 2024 11:32:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:18:01.580626
- Title: EQNN: Enhanced Quantum Neural Network
- Title(参考訳): EQNN: 量子ニューラルネットワークの強化
- Authors: Abel C. H. Chen,
- Abstract要約: 本研究では、拡張特徴マップ(EFM)を含む拡張量子ニューラルネットワーク(EQNN)を提案する。
このEMMは、入力変数を量子コンピューティングに適した値範囲に効果的にマッピングし、変動モデルへの入力として機能し、精度を向上させる。
提案したEQNNは、現在の主流QNNと比較され、実験結果から、量子論理ゲートが少なくて高い精度が得られることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: With the maturation of quantum computing technology, research has gradually shifted towards exploring its applications. Alongside the rise of artificial intelligence, various machine learning methods have been developed into quantum circuits and algorithms. Among them, Quantum Neural Networks (QNNs) can map inputs to quantum circuits through Feature Maps (FMs) and adjust parameter values via variational models, making them applicable in regression and classification tasks. However, designing a FM that is suitable for a given application problem is a significant challenge. In light of this, this study proposes an Enhanced Quantum Neural Network (EQNN), which includes an Enhanced Feature Map (EFM) designed in this research. This EFM effectively maps input variables to a value range more suitable for quantum computing, serving as the input to the variational model to improve accuracy. In the experimental environment, this study uses mobile data usage prediction as a case study, recommending appropriate rate plans based on users' mobile data usage. The proposed EQNN is compared with current mainstream QNNs, and experimental results show that the EQNN achieves higher accuracy with fewer quantum logic gates and converges to the optimal solution faster under different optimization algorithms.
- Abstract(参考訳): 量子コンピューティング技術の成熟に伴い、研究は徐々に応用の探求へと移行してきた。
人工知能の台頭とともに、様々な機械学習手法が量子回路やアルゴリズムへと発展してきた。
中でも量子ニューラルネットワーク(QNN)は、フィーチャーマップ(FM)を通じて入力を量子回路にマッピングし、変動モデルを介してパラメータ値を調整し、回帰や分類タスクに適用することができる。
しかし、特定のアプリケーション問題に適したFMを設計することは大きな課題である。
これを踏まえて,本研究で設計されたEFMを含む拡張量子ニューラルネットワーク(EQNN)を提案する。
このEMMは、入力変数を量子コンピューティングに適した値範囲に効果的にマッピングし、変動モデルへの入力として機能し、精度を向上させる。
実験環境では,モバイルデータの利用率予測をケーススタディとして利用し,ユーザのモバイルデータ利用率に基づいた適切なレートプランを推奨する。
提案したEQNNは、現在の主流QNNと比較され、実験結果から、EQNNはより少ない量子論理ゲートで高い精度を達成し、異なる最適化アルゴリズムの下で最適解に収束することを示した。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
ディープフェイク技術は プライバシー セキュリティ 情報整合性に 課題をもたらす
本稿では,ディープフェイク音声の検出を強化するために,量子学習型畳み込みニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-11T20:52:10Z) - Optimizing Quantum Convolutional Neural Network Architectures for Arbitrary Data Dimension [2.9396076967931526]
量子畳み込みニューラルネットワーク(QCNN)は量子機械学習において有望なアプローチである。
量子リソースの割り当てを最適化しながら任意の入力データ次元を処理できるQCNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-28T02:25:12Z) - Coherent Feed Forward Quantum Neural Network [2.1178416840822027]
量子ニューラルネットワーク(QNN)に焦点をあてた量子機械学習は、いまだに膨大な研究分野である。
適応可能な中間層とノードの観点から,従来のFFNNの汎用性とシームレスに整合するボナフェイドQNNモデルを提案する。
本研究では,診断乳がん(Wisconsin)やクレジットカード不正検出データセットなど,さまざまなベンチマークデータセットを用いて提案モデルを検証した。
論文 参考訳(メタデータ) (2024-02-01T15:13:26Z) - Splitting and Parallelizing of Quantum Convolutional Neural Networks for
Learning Translationally Symmetric Data [0.0]
分割並列化QCNN(sp-QCNN)と呼ばれる新しいアーキテクチャを提案する。
量子回路を翻訳対称性に基づいて分割することにより、sp-QCNNはキュービット数を増やすことなく従来のQCNNを実質的に並列化することができる。
本稿では,sp-QCNNが従来のQCNNと同等の分類精度を達成でき,必要な測定資源を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2023-06-12T18:00:08Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
本稿では,量子最適化アルゴリズムを用いて量子ニューラルネットワーク(QNN)のトレーニングを行う方法について検討する。
本稿では、変分量子ニューラルネットワーク(VQNN)と呼ばれる入力層として、変分パラメータ化回路を組み込んだQNN構造を作成する。
VQNNは、MNIST桁認識(複雑でない)とクラック画像分類データセットで実験され、QNNよりも少ない時間で、適切なトレーニング精度で計算を収束させる。
論文 参考訳(メタデータ) (2023-03-10T11:24:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
ハイブリッドQCNNは、標準ニューラルネットワーク内に量子層を導入することで、CNNの古典的なアーキテクチャを豊かにする。
この研究で提案された新しいQCNNは、地球観測(EO)のユースケースとして選択された土地利用・土地被覆(LULC)分類に適用される。
マルチクラス分類の結果は,QCNNの性能が従来の性能よりも高いことを示すことによって,提案手法の有効性を証明した。
論文 参考訳(メタデータ) (2021-09-20T12:41:50Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。