A Precisão da Metrologia Quântica: Limite de Cramér-Rao, Informação de Fisher e possíveis Aplicações Tecnológicas
- URL: http://arxiv.org/abs/2411.17797v1
- Date: Tue, 26 Nov 2024 18:01:06 GMT
- Title: A Precisão da Metrologia Quântica: Limite de Cramér-Rao, Informação de Fisher e possíveis Aplicações Tecnológicas
- Authors: Leonardo A. M. Souza,
- Abstract summary: This paper explores as didactically as possible the fundamental principles of both classical and quantum metrology.
We focus on the Cram'er-Rao Bound and how it defines the maximum precision in parameter estimation.
We discuss how quantum states can surpass classical limits, providing much greater precision.
- Score: 0.0
- License:
- Abstract: This paper explores as didactically as possible the fundamental principles of both classical and quantum metrology, focusing on the Cram\'er-Rao Bound and how it defines the maximum precision in parameter estimation, taking into account noise and the information extracted from the data. We also conduct a detailed study of Fisher Information (both classical and quantum), showing the physical significance of this important figure of merit in metrology. We further discuss how quantum states can surpass classical limits, providing much greater precision. Examples of technological applications include the development of quantum sensors, quantum thermometers, and phase parameter estimation. Finally, we review our results on the estimation of the unknown compression parameter applied to a mode of a quantum Gaussian state.
Related papers
- Quantum metrology with a continuous-variable system [0.0]
We discuss precision limits and optimal strategies in quantum metrology and sensing with a single mode of quantum continuous variables.
We summarize some of the main experimental achievements and present emerging platforms for continuous-variable sensing.
arXiv Detail & Related papers (2024-11-06T18:57:07Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Combining critical and quantum metrology [0.0]
We introduce an approach combining two methodologies into a unified protocol applicable to closed and driven-dissipative systems.
We provide analytical expressions for the quantum and classical Fisher information in such a setup, elucidating as well a straightforward measurement approach.
We showcase these results by focusing on the squeezing Hamiltonian, which characterizes the thermodynamic limit of Dicke and Lipkin-Meshkov-Glick Hamiltonians.
arXiv Detail & Related papers (2023-11-28T04:21:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Analytical techniques in single and multi-parameter quantum estimation
theory: a focused review [0.0]
This review provides techniques on the analytical calculation of the quantum Fisher information as well as the quantum Fisher information matrix.
It provides a mathematical transition from classical to quantum estimation theory applied to many freedom quantum systems.
arXiv Detail & Related papers (2022-04-29T17:29:45Z) - Quantum Information Techniques for Quantum Metrology [0.0]
Main goal of quantum metrology is to estimate unknown parameters as accurately as possible.
By using quantum resources as probes, it is possible to attain a measurement precision that would be otherwise impossible using the best classical strategies.
This thesis explores how quantum metrology can be enhanced with other quantum techniques when appropriate.
arXiv Detail & Related papers (2022-01-05T10:19:25Z) - Criticality-enhanced quantum sensor at finite temperature [44.23814225750129]
We propose a thermodynamic-criticality-enhanced quantum sensing scenario at finite temperature.
It is revealed that the thermodynamic criticality of the Dicke model can significantly improve the sensing precision.
arXiv Detail & Related papers (2021-10-15T02:39:31Z) - Optimal Control for Quantum Metrology via Pontryagin's principle [8.920103626492315]
We apply Pontryagin's Maximum Principle to determine the optimal protocol that maximizes the quantum Fisher information for a given evolution time.
The proposed formalism is generalized to problems with control constraints, and can also be used to maximize the classical Fisher information for a chosen measurement.
arXiv Detail & Related papers (2021-05-14T16:22:57Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
We design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations.
We experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
arXiv Detail & Related papers (2020-12-08T01:10:30Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.