First result for testing semiclassical gravity effect with a torsion balance
- URL: http://arxiv.org/abs/2411.17817v1
- Date: Tue, 26 Nov 2024 19:01:42 GMT
- Title: First result for testing semiclassical gravity effect with a torsion balance
- Authors: Tianliang Yan, Yubao Liu, Leonid Prokhorov, Jiri Smetana, Haixing Miao, Yiqiu Ma, Vincent Boyer, Denis Martynov,
- Abstract summary: The Schr"odinger-Newton equation predicts that gravity may induce measurable deviations in low-frequency mechanical systems.<n>This work demonstrates the potential of precision optomechanics to probe the interplay between quantum mechanics and gravity.
- Score: 1.488914759693609
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Schr\"odinger-Newton equation, a theoretical framework connecting quantum mechanics with classical gravity, predicts that gravity may induce measurable deviations in low-frequency mechanical systems-an intriguing hypothesis at the frontier of fundamental physics. In this study, we developed and operated an advanced optomechanical platform to investigate these effects. The system integrates an optical cavity with finesse over 350000 and a torsion pendulum with an ultra-low eigenfrequency of 0.6mHz, achieving a high mechanical Q-factor exceeding 50000. We collected data for 3 months and reached a sensitivity of 0.3urad/rtHz at the Schr\"odinger-Newton frequency of 2.5mHz where deviations from the standard quantum mechanics may occur. While no evidence supporting semiclassical gravity was found, we identify key challenges in such tests and propose new experimental approaches to advance this line of inquiry. This work demonstrates the potential of precision optomechanics to probe the interplay between quantum mechanics and gravity.
Related papers
- Conditional Motional Squeezing of an Optomechanical Oscillator Approaching the Quantum Regime [3.5369433254206752]
This work paves the way to real-time measurement-based preparation of macroscopic oscillators in quantum squeezed states.
It can be adapted to mechanical systems as large as the kg-scale test masses of the Laser Interferometer Gravitational-Wave Observatory.
arXiv Detail & Related papers (2024-10-11T19:23:20Z) - Quantum Sensing from Gravity as Universal Dephasing Channel for Qubits [41.96816488439435]
WeExploit the generic phenomena of the gravitational redshift and Aharonov-Bohm phase.
We show that entangled quantum states dephase with a universal rate.
We propose qubit-based platforms as quantum sensors for precision gravitometers and mechanical strain gauges.
arXiv Detail & Related papers (2024-06-05T13:36:06Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - A squeezed mechanical oscillator with milli-second quantum decoherence [0.0]
We introduce a superconducting circuit optomechanical platform which exhibits a low quantum decoherence.
This allows us to prepare the quantum ground and squeezed states of motion with high fidelity.
We observe the free evolution of mechanical squeezed state, preserving its non-classical nature over milli-second timescales.
arXiv Detail & Related papers (2022-08-27T20:17:24Z) - Constraints on probing quantum coherence to infer gravitational
entanglement [0.0]
Gravity mediated entanglement generation so far appears to be the key ingredient for a potential experiment.
With measurements performed only on the atoms, a coherence revival test is proposed for verifying this entanglement generation.
We explore formulations of such a protocol, and specifically find that in the envisioned regime of operation with high thermal excitation, semi-classical models, where there is no concept of entanglement, also give the same experimental signatures.
arXiv Detail & Related papers (2021-06-15T15:29:35Z) - Prospects for observing gravitational forces between nonclassical
mechanical oscillators [2.7071541526963805]
Micromechanical oscillators have been suggested as a plausible platform to carry out gravity experiments.
We present an experimental design aiming at these goals.
Although the gravity is classical, the experiment will pave the way for testing true quantum gravity.
arXiv Detail & Related papers (2020-08-24T14:36:35Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.