論文の概要: AEGIS: An Agent-based Framework for General Bug Reproduction from Issue Descriptions
- arxiv url: http://arxiv.org/abs/2411.18015v1
- Date: Wed, 27 Nov 2024 03:16:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:28:38.581156
- Title: AEGIS: An Agent-based Framework for General Bug Reproduction from Issue Descriptions
- Title(参考訳): AEGIS: 問題記述から一般バグを再現するためのエージェントベースのフレームワーク
- Authors: Xinchen Wang, Pengfei Gao, Xiangxin Meng, Chao Peng, Ruida Hu, Yun Lin, Cuiyun Gao,
- Abstract要約: gEneral buG reproductIon Scripts 生成フレームワークは AEGIS という名称で、タスクのための最初のエージェントベースのフレームワークである。
AEGISは、Agentlessの相対的な解決率を12.5%向上させることができる。
- 参考スコア(独自算出の注目度): 10.686849324750556
- License:
- Abstract: In software maintenance, bug reproduction is essential for effective fault localization and repair. Manually writing reproduction scripts is a time-consuming task with high requirements for developers. Hence, automation of bug reproduction has increasingly attracted attention from researchers and practitioners. However, the existing studies on bug reproduction are generally limited to specific bug types such as program crashes, and hard to be applied to general bug reproduction. In this paper, considering the superior performance of agent-based methods in code intelligence tasks, we focus on designing an agent-based framework for the task. Directly employing agents would lead to limited bug reproduction performance, due to entangled subtasks, lengthy retrieved context, and unregulated actions. To mitigate the challenges, we propose an Automated gEneral buG reproductIon Scripts generation framework, named AEGIS, which is the first agent-based framework for the task. AEGIS mainly contains two modules: (1) A concise context construction module, which aims to guide the code agent in extracting structured information from issue descriptions, identifying issue-related code with detailed explanations, and integrating these elements to construct the concise context; (2) A FSM-based multi-feedback optimization module to further regulate the behavior of the code agent within the finite state machine (FSM), ensuring a controlled and efficient script generation process based on multi-dimensional feedback. Extensive experiments on the public benchmark dataset show that AEGIS outperforms the state-of-the-art baseline by 23.0% in F->P metric. In addition, the bug reproduction scripts generated by AEGIS can improve the relative resolved rate of Agentless by 12.5%.
- Abstract(参考訳): ソフトウェアのメンテナンスにおいて、バグの再現は効果的な障害の局所化と修復に不可欠である。
手書きの複製スクリプトを書くことは、開発者にとって高い要求のある時間を要するタスクである。
したがって、バグ再現の自動化は研究者や実践者から注目を集めている。
しかし、既存のバグ再現の研究は、プログラムクラッシュのような特定のバグタイプに限られており、一般的なバグ再現には適用が難しい。
本稿では,コードインテリジェンスタスクにおけるエージェントベースの手法の優れた性能を考慮し,エージェントベースのフレームワークの設計に焦点をあてる。
エージェントを直接使用すると、絡み合ったサブタスク、長い検索コンテキスト、規制されていないアクションによって、バグ再現のパフォーマンスが制限される。
課題を軽減するため,タスクのためのエージェントベースのフレームワークとして,AEGIS という名の Automated gEneral buG reproductIon Scripts 生成フレームワークを提案する。
AEGISは,(1)問題記述から構造化情報を抽出し,課題関連コードを詳細な説明で識別し,それらの要素を統合して,簡潔なコンテキストを構築することを目的とした簡潔なコンテキスト構築モジュール,(2)有限状態マシン(FSM)内のコードエージェントの挙動をさらに制御し,多次元フィードバックに基づく制御および効率的なスクリプト生成プロセスを確実にするFSMベースのマルチフィードバック最適化モジュール,の2つのモジュールを主に含んでいる。
公開ベンチマークデータセットの大規模な実験により、AIGISはF->P測定で最先端のベースラインを23.0%上回る結果となった。
さらに、AEGISによって生成されたバグ再現スクリプトは、Agentlessの相対的な解決率を12.5%向上させることができる。
関連論文リスト
- An Empirical Study on LLM-based Agents for Automated Bug Fixing [2.433168823911037]
大規模な言語モデル (LLM) と LLM ベースのエージェントが自動的にバグを修正するために適用されている。
自動バグ修正のためのSWE-bench Liteベンチマークにおいて,プロプライエタリでオープンソースな7つのシステムについて検討した。
論文 参考訳(メタデータ) (2024-11-15T14:19:15Z) - CRAT: A Multi-Agent Framework for Causality-Enhanced Reflective and Retrieval-Augmented Translation with Large Language Models [59.8529196670565]
CRATは、RAGと因果強化自己回帰を利用して翻訳課題に対処する、新しいマルチエージェント翻訳フレームワークである。
以上の結果からCRATは翻訳精度を著しく向上させ,特に文脈に敏感な単語や語彙の出現に寄与することが示唆された。
論文 参考訳(メタデータ) (2024-10-28T14:29:11Z) - Evaluating Software Development Agents: Patch Patterns, Code Quality, and Issue Complexity in Real-World GitHub Scenarios [13.949319911378826]
この調査は、500の現実のGitHubイシューで上位10のエージェントから4,892のパッチを評価した。
一人のエージェントが支配的であり、170の問題が未解決であり、改善の余地があった。
ほとんどのエージェントはコードの信頼性とセキュリティを維持し、新しいバグや脆弱性を避けた。
一部のエージェントはコードの複雑さを増し、多くの重複を減らし、コードの臭いを最小限にした。
論文 参考訳(メタデータ) (2024-10-16T11:33:57Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
大規模言語モデル(LLM)は、コード生成タスクにおいて驚くべきポテンシャルを示しています。
LLMはタスク記述に基づいてコードを生成することができるが、精度は限られている。
コード生成と自動デバッグのためのLLMエージェントの新しいアーキテクチャ:Refinement and Guidancebug (RGD)を紹介する。
RGDはコード生成タスクを複数のステップに分割し、より明確なワークフローを確保し、自己回帰とフィードバックに基づいた反復的なコード改善を可能にする。
論文 参考訳(メタデータ) (2024-10-02T05:07:02Z) - MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains [54.117238759317004]
大規模マルチタスクエージェント理解(MMAU)ベンチマークは、複雑な環境設定を必要としない包括的なオフラインタスクを特徴としている。
ツールユース、DAG(Directed Acyclic Graph)QA、データサイエンスと機械学習コーディング、コンテストレベルのプログラミング、数学の5分野にわたるモデルを評価する。
3K以上の異なるプロンプトを含む20の精巧に設計されたタスクにより、MMAUはLLMエージェントの強度と限界を評価するための包括的なフレームワークを提供する。
論文 参考訳(メタデータ) (2024-07-18T00:58:41Z) - A Unified Debugging Approach via LLM-Based Multi-Agent Synergy [39.11825182386288]
FixAgentはマルチエージェントのシナジーによる統合デバッグのためのエンドツーエンドフレームワークである。
1.25$times$ 2.56$times$レポレベルのベンチマークであるDefects4Jのバグを修正した。
論文 参考訳(メタデータ) (2024-04-26T04:55:35Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
グラフマスク付きオートエンコーダのための統一フレームワークであるUGMAEを提案する。
まず,ノードの特異性を考慮した適応型特徴マスク生成器を開発した。
次に,階層型構造再構成と特徴再構成を併用し,総合的なグラフ情報を取得する。
論文 参考訳(メタデータ) (2024-02-12T19:39:26Z) - CorpusLM: Towards a Unified Language Model on Corpus for Knowledge-Intensive Tasks [20.390672895839757]
Retrieval-augmented Generation (RAG) は、事実精度を高めるための一般的なソリューションとして登場した。
従来の検索モジュールは、大きなドキュメントインデックスと生成タスクとの切り離しに依存していることが多い。
生成検索,クローズドブック生成,RAGを統合した統一言語モデルである textbfCorpusLM を提案する。
論文 参考訳(メタデータ) (2024-02-02T06:44:22Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssueは、現実的なバグローカライゼーションのためのベンチマークである。
実際のJavaバグと合成Javaバグの多様性を備えた一般的なベンチマークを提供する。
われわれは,バグローカライゼーションの最先端技術として,APRの性能向上と,現代の開発サイクルへの適用性の向上を期待している。
論文 参考訳(メタデータ) (2022-07-21T20:17:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。