Scalable Multi-Objective Reinforcement Learning with Fairness Guarantees using Lorenz Dominance
- URL: http://arxiv.org/abs/2411.18195v1
- Date: Wed, 27 Nov 2024 10:16:25 GMT
- Title: Scalable Multi-Objective Reinforcement Learning with Fairness Guarantees using Lorenz Dominance
- Authors: Dimitris Michailidis, Willem Röpke, Diederik M. Roijers, Sennay Ghebreab, Fernando P. Santos,
- Abstract summary: Multi-Objective Reinforcement Learning (MORL) aims to learn a set of policies that optimize trade-offs between multiple, often conflicting objectives.
This paper introduces a principled algorithm that incorporates fairness into MORL while improving scalability to many-objective problems.
- Score: 43.44913206006581
- License:
- Abstract: Multi-Objective Reinforcement Learning (MORL) aims to learn a set of policies that optimize trade-offs between multiple, often conflicting objectives. MORL is computationally more complex than single-objective RL, particularly as the number of objectives increases. Additionally, when objectives involve the preferences of agents or groups, ensuring fairness is socially desirable. This paper introduces a principled algorithm that incorporates fairness into MORL while improving scalability to many-objective problems. We propose using Lorenz dominance to identify policies with equitable reward distributions and introduce {\lambda}-Lorenz dominance to enable flexible fairness preferences. We release a new, large-scale real-world transport planning environment and demonstrate that our method encourages the discovery of fair policies, showing improved scalability in two large cities (Xi'an and Amsterdam). Our methods outperform common multi-objective approaches, particularly in high-dimensional objective spaces.
Related papers
- Intersectional Fairness in Reinforcement Learning with Large State and Constraint Spaces [16.400288624027375]
In many real-world settings, it is important to optimize over multiple objectives simultaneously.
We consider a multi-objective optimization problem in which each objective is defined by a state-based reweighting of a single scalar reward function.
We provide oracle-efficient algorithms to solve these multi-objective RL problems even when the number of objectives is exponentially large.
arXiv Detail & Related papers (2025-02-17T14:25:33Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.
Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.
We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - Navigating Trade-offs: Policy Summarization for Multi-Objective Reinforcement Learning [10.848218400641466]
Multi-objective reinforcement learning (MORL) is used to solve problems involving multiple objectives.
We propose an approach for clustering the solution set generated by MORL.
arXiv Detail & Related papers (2024-11-07T15:26:38Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Achieving Fairness in Multi-Agent Markov Decision Processes Using
Reinforcement Learning [30.605881670761853]
We propose a Reinforcement Learning approach to achieve fairness in finite-horizon episodic MDPs.
We show that such an approach achieves sub-linear regret in terms of the number of episodes.
arXiv Detail & Related papers (2023-06-01T03:43:53Z) - Generative multitask learning mitigates target-causing confounding [61.21582323566118]
We propose a simple and scalable approach to causal representation learning for multitask learning.
The improvement comes from mitigating unobserved confounders that cause the targets, but not the input.
Our results on the Attributes of People and Taskonomy datasets reflect the conceptual improvement in robustness to prior probability shift.
arXiv Detail & Related papers (2022-02-08T20:42:14Z) - MORAL: Aligning AI with Human Norms through Multi-Objective Reinforced
Active Learning [14.06682547001011]
State-of-the art methods typically focus on learning a single reward model.
We propose Multi-Objective Reinforced Active Learning (MORAL), a novel method for combining diverse demonstrations of social norms.
Our approach is able to interactively tune a deep RL agent towards a variety of preferences, while eliminating the need for computing multiple policies.
arXiv Detail & Related papers (2021-12-30T19:21:03Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
We introduce Scalarized Multi-Objective Reinforcement Learning (SMORL) for the Recommender Systems (RS) setting.
SMORL agent augments standard recommendation models with additional RL layers that enforce it to simultaneously satisfy three principal objectives: accuracy, diversity, and novelty of recommendations.
Our experimental results on two real-world datasets reveal a substantial increase in aggregate diversity, a moderate increase in accuracy, reduced repetitiveness of recommendations, and demonstrate the importance of reinforcing diversity and novelty as complementary objectives.
arXiv Detail & Related papers (2021-10-28T13:22:45Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives.
Existing methods require strong assumptions such as exact knowledge of the multi-objective decision process.
We propose a new algorithm called model-based envelop value (EVI) which generalizes the enveloped multi-objective $Q$-learning algorithm.
arXiv Detail & Related papers (2020-11-19T22:35:31Z) - A Distributional View on Multi-Objective Policy Optimization [24.690800846837273]
We propose an algorithm for multi-objective reinforcement learning that enables setting desired preferences for objectives in a scale-invariant way.
We show that setting different preferences in our framework allows us to trace out the space of nondominated solutions.
arXiv Detail & Related papers (2020-05-15T13:02:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.