論文の概要: A Survey on Agent Workflow -- Status and Future
- arxiv url: http://arxiv.org/abs/2508.01186v1
- Date: Sat, 02 Aug 2025 04:15:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.746977
- Title: A Survey on Agent Workflow -- Status and Future
- Title(参考訳): エージェントワークフローに関する調査-現状と将来
- Authors: Chaojia Yu, Zihan Cheng, Hanwen Cui, Yishuo Gao, Zexu Luo, Yijin Wang, Hangbin Zheng, Yong Zhao,
- Abstract要約: この調査は、エージェントワークフローシステムの包括的なレビューを提供する。
既存のシステムを機能機能機能とアーキテクチャの2つの重要な側面に沿って分類する。
共通パターン、潜在的な技術的課題、新たなトレンドを強調します。
- 参考スコア(独自算出の注目度): 2.817843718857682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the age of large language models (LLMs), autonomous agents have emerged as a powerful paradigm for achieving general intelligence. These agents dynamically leverage tools, memory, and reasoning capabilities to accomplish user-defined goals. As agent systems grow in complexity, agent workflows-structured orchestration frameworks-have become central to enabling scalable, controllable, and secure AI behaviors. This survey provides a comprehensive review of agent workflow systems, spanning academic frameworks and industrial implementations. We classify existing systems along two key dimensions: functional capabilities (e.g., planning, multi-agent collaboration, external API integration) and architectural features (e.g., agent roles, orchestration flows, specification languages). By comparing over 20 representative systems, we highlight common patterns, potential technical challenges, and emerging trends. We further address concerns related to workflow optimization strategies and security. Finally, we outline open problems such as standardization and multimodal integration, offering insights for future research at the intersection of agent design, workflow infrastructure, and safe automation.
- Abstract(参考訳): 大規模言語モデル(LLM)の時代、自律エージェントは汎用知性を達成するための強力なパラダイムとして現れてきた。
これらのエージェントは、動的にツール、メモリ、推論機能を活用して、ユーザ定義の目標を達成する。
エージェントシステムが複雑さを増すにつれ、エージェントワークフローが構造化されるオーケストレーションフレームワークは、スケーラブルで制御可能でセキュアなAI動作を実現するための中心となってきています。
この調査は、学術的なフレームワークと産業的な実装にまたがる、エージェントワークフローシステムの包括的なレビューを提供する。
機能機能(プランニング、マルチエージェントコラボレーション、外部API統合)とアーキテクチャ機能(エージェントロール、オーケストレーションフロー、仕様言語など)です。
20以上の代表的なシステムを比較することで、共通パターン、潜在的な技術的課題、新たなトレンドが浮かび上がっています。
さらにワークフロー最適化戦略やセキュリティに関する懸念にも対処する。
最後に、標準化やマルチモーダル統合といったオープンな問題を概説し、エージェント設計、ワークフローインフラストラクチャ、安全な自動化の交差点における将来の研究の洞察を提供する。
関連論文リスト
- Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
大規模言語モデル(LLM)を活用したAIエージェントの出現は、エージェントWebに対する重要な転換点である。
このパラダイムでは、エージェントが直接対話して、ユーザに代わって複雑なタスクを計画、コーディネート、実行します。
本稿では,エージェントWebの理解と構築のための構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-28T17:58:12Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving [30.50203052125566]
Projectnameは汎用タスク解決のための階層的なマルチエージェントフレームワークである。
Projectnameは、複雑な目的を分解し、サブタスクを専門エージェントのチームに委譲する中央計画エージェントを特徴とする。
各サブエージェントは、汎用プログラミングおよび分析ツールと、幅広い現実世界固有のタスクに取り組む能力を備えている。
論文 参考訳(メタデータ) (2025-06-14T13:45:37Z) - AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges [0.36868085124383626]
この研究はAIエージェントとエージェントAIを区別し、構造化された概念分類、アプリケーションマッピング、課題分析を提供する。
ジェネレーティブAIは前駆体として位置づけられており、AIエージェントはツールの統合、エンジニアリングの促進、推論の強化を通じて前進している。
エージェントAIシステムは、マルチエージェントコラボレーション、動的タスク分解、永続メモリ、オーケストレーション自律性によって特徴付けられるパラダイムシフトを表している。
論文 参考訳(メタデータ) (2025-05-15T16:21:33Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
異種エージェント間のシームレスな相互接続、動的発見、協調的なオーケストレーションを可能にする基盤となるフレームワークとして、エージェントのインターネット(IoA)を紹介した。
我々は,機能通知と発見,適応通信プロトコル,動的タスクマッチング,コンセンサスとコンフリクト解決機構,インセンティブモデルなど,IoAの重要な運用イネーラを分析した。
論文 参考訳(メタデータ) (2025-05-12T02:04:37Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - AgentOps: Enabling Observability of LLM Agents [12.49728300301026]
大規模言語モデル(LLM)エージェントは、自律的で非決定論的行動のため、AI安全性に重大な懸念を提起する。
本稿では,エージェントのライフサイクル全体を通じて追跡されるべきアーティファクトと関連するデータを特定し,効果的な観測可能性を実現するための,AgentOpsの包括的な分類法を提案する。
私たちの分類は、監視、ロギング、分析をサポートするAgentOpsインフラストラクチャを設計、実装するためのリファレンステンプレートとして機能します。
論文 参考訳(メタデータ) (2024-11-08T02:31:03Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
LLM-Agent-UMF(LLM-Agent-UMF)に基づく新しいエージェント統一モデリングフレームワークを提案する。
我々のフレームワークはLLMエージェントの異なるコンポーネントを区別し、LLMとツールを新しい要素であるコアエージェントから分離する。
我々は,13の最先端エージェントに適用し,それらの機能との整合性を実証することによって,我々の枠組みを評価する。
論文 参考訳(メタデータ) (2024-09-17T17:54:17Z) - ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems [80.69865295743149]
この研究は、LLMベースのエージェントを使用して、協調AIシステムを自律的に設計する試みである。
ComfyBenchをベースとしたComfyAgentは,エージェントが自律的に協調的なAIシステムを生成して設計できるようにするフレームワークである。
ComfyAgentは、o1-previewに匹敵する解像度を達成し、ComfyBenchの他のエージェントをはるかに上回っているが、ComfyAgentはクリエイティブタスクの15%しか解決していない。
論文 参考訳(メタデータ) (2024-09-02T17:44:10Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration [0.0]
我々は、様々なドメインにわたる複雑なユースケースアプリケーションを扱う柔軟なエージェントエンジニアリングフレームワークの設計に重点を置いている。
提案するフレームワークは,産業用アプリケーションの信頼性を提供し,複数の自律エージェントに対して,スケーラブルでフレキシブルで協調的なワークフローを保証するためのテクニックを提供する。
論文 参考訳(メタデータ) (2024-06-28T16:39:20Z) - An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z) - Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM
Agents [0.0]
本稿では,マルチエージェントシステムのパワーを活用した大規模言語モデル(LLM)の能力向上のための新しいフレームワークを提案する。
本フレームワークでは,複数の知的エージェントコンポーネントがそれぞれ特有な属性と役割を持つ協調環境を導入し,複雑なタスクをより効率的に効率的に処理する。
論文 参考訳(メタデータ) (2023-06-05T23:55:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。