Exploration of LLM Multi-Agent Application Implementation Based on LangGraph+CrewAI
- URL: http://arxiv.org/abs/2411.18241v1
- Date: Wed, 27 Nov 2024 11:29:17 GMT
- Title: Exploration of LLM Multi-Agent Application Implementation Based on LangGraph+CrewAI
- Authors: Zhihua Duan, Jialin Wang,
- Abstract summary: This paper discusses the integrated application of LangGraph and CrewAI.<n>LangGraph improves the efficiency of information transmission through graph architecture.<n>CrewAI enhances team collaboration capabilities and system performance.
- Score: 1.4582633500696451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of large model technology, the application of agent technology in various fields is becoming increasingly widespread, profoundly changing people's work and lifestyles. In complex and dynamic systems, multi-agents achieve complex tasks that are difficult for a single agent to complete through division of labor and collaboration among agents. This paper discusses the integrated application of LangGraph and CrewAI. LangGraph improves the efficiency of information transmission through graph architecture, while CrewAI enhances team collaboration capabilities and system performance through intelligent task allocation and resource management. The main research contents of this paper are: (1) designing the architecture of agents based on LangGraph for precise control; (2) enhancing the capabilities of agents based on CrewAI to complete a variety of tasks. This study aims to delve into the application of LangGraph and CrewAI in multi-agent systems, providing new perspectives for the future development of agent technology, and promoting technological progress and application innovation in the field of large model intelligent agents.
Related papers
- Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.
This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.
Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - LLMs Working in Harmony: A Survey on the Technological Aspects of Building Effective LLM-Based Multi Agent Systems [0.0]
This survey investigates foundational technologies essential for developing effective Large Language Model (LLM)-based multi-agent systems.
Aiming to answer how best to optimize these systems for collaborative, dynamic environments, we focus on four critical areas: Architecture, Memory, Planning, and Technologies/ Frameworks.
arXiv Detail & Related papers (2025-03-13T06:17:50Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
Large language model (LLM) based artificial intelligence technologies have been a game-changer, particularly in sentiment analysis.
However, integrating diverse AI models for processing complex multimodal data and the associated high costs of feature extraction presents significant challenges.
This study introduces a collaborative AI framework designed to efficiently distribute and resolve tasks across various AI systems.
arXiv Detail & Related papers (2024-10-17T06:14:34Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.
In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.
Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
We propose a novel LLM-based Agent Unified Modeling Framework (LLM-Agent-UMF)
Our framework distinguishes between the different components of an LLM-based agent, setting LLMs and tools apart from a new element, the core-agent.
We evaluate our framework by applying it to thirteen state-of-the-art agents, thereby demonstrating its alignment with their functionalities.
arXiv Detail & Related papers (2024-09-17T17:54:17Z) - ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems [80.69865295743149]
This work attempts to study using LLM-based agents to design collaborative AI systems autonomously.<n>Based on ComfyBench, we develop ComfyAgent, a framework that empowers agents to autonomously design collaborative AI systems by generating.<n>While ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15% of creative tasks.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.