Multimodal Integration of Longitudinal Noninvasive Diagnostics for Survival Prediction in Immunotherapy Using Deep Learning
- URL: http://arxiv.org/abs/2411.18253v2
- Date: Sat, 07 Jun 2025 18:52:25 GMT
- Title: Multimodal Integration of Longitudinal Noninvasive Diagnostics for Survival Prediction in Immunotherapy Using Deep Learning
- Authors: Melda Yeghaian, Zuhir Bodalal, Daan van den Broek, John B A G Haanen, Regina G H Beets-Tan, Stefano Trebeschi, Marcel A J van Gerven,
- Abstract summary: We developed a novel artificial neural network architecture, multimodal transformer-based simple temporal attention (MMTSimTA) network.<n>We integrated pre- and on-treatment blood measurements, prescribed medications and CT-based volumes of organs from a large pan-cancer cohort of 694 patients treated with immunotherapy to predict mortality.<n>Our findings show that integrating noninvasive longitudinal data using our novel architecture yields an improved multimodal prognostic performance, especially in short-term survival prediction.
- Score: 0.8428580558402998
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Purpose: Immunotherapies have revolutionized the landscape of cancer treatments. However, our understanding of response patterns in advanced cancers treated with immunotherapy remains limited. By leveraging routinely collected noninvasive longitudinal and multimodal data with artificial intelligence, we could unlock the potential to transform immunotherapy for cancer patients, paving the way for personalized treatment approaches. Methods: In this study, we developed a novel artificial neural network architecture, multimodal transformer-based simple temporal attention (MMTSimTA) network, building upon a combination of recent successful developments. We integrated pre- and on-treatment blood measurements, prescribed medications and CT-based volumes of organs from a large pan-cancer cohort of 694 patients treated with immunotherapy to predict mortality at three, six, nine and twelve months. Different variants of our extended MMTSimTA network were implemented and compared to baseline methods incorporating intermediate and late fusion based integration methods. Results: The strongest prognostic performance was demonstrated using a variant of the MMTSimTA model with area under the curves (AUCs) of $0.84 \pm $0.04, $0.83 \pm $0.02, $0.82 \pm $0.02, $0.81 \pm $0.03 for 3-, 6-, 9-, and 12-month survival prediction, respectively. Discussion: Our findings show that integrating noninvasive longitudinal data using our novel architecture yields an improved multimodal prognostic performance, especially in short-term survival prediction. Conclusion: Our study demonstrates that multimodal longitudinal integration of noninvasive data using deep learning may offer a promising approach for personalized prognostication in immunotherapy-treated cancer patients.
Related papers
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.
Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.
Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.
Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Survival Prediction in Lung Cancer through Multi-Modal Representation Learning [9.403446155541346]
This paper presents a novel approach to survival prediction by harnessing comprehensive information from CT and PET scans, along with associated Genomic data.
We aim to develop a robust predictive model for survival outcomes by integrating multi-modal imaging data with genetic information.
arXiv Detail & Related papers (2024-09-30T10:42:20Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Leveraging Transformers to Improve Breast Cancer Classification and Risk
Assessment with Multi-modal and Longitudinal Data [3.982926115291704]
Multi-modal Transformer (MMT) is a neural network that utilizes mammography and ultrasound synergistically.
MMT tracks temporal tissue changes by comparing current exams to prior imaging.
For 5-year risk prediction, MMT attains an AUROC of 0.826, outperforming prior mammography-based risk models.
arXiv Detail & Related papers (2023-11-06T16:01:42Z) - Cross-modality Attention-based Multimodal Fusion for Non-small Cell Lung
Cancer (NSCLC) Patient Survival Prediction [0.6476298550949928]
We propose a cross-modality attention-based multimodal fusion pipeline designed to integrate modality-specific knowledge for patient survival prediction in non-small cell lung cancer (NSCLC)
Compared with single modality, which achieved c-index of 0.5772 and 0.5885 using solely tissue image data or RNA-seq data, respectively, the proposed fusion approach achieved c-index 0.6587 in our experiment.
arXiv Detail & Related papers (2023-08-18T21:42:52Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients.
The developed risk marker was the strongest predictor of overall survival among preoperative factors.
arXiv Detail & Related papers (2023-08-01T12:46:02Z) - Pathology-and-genomics Multimodal Transformer for Survival Outcome
Prediction [43.1748594898772]
We propose a multimodal transformer (PathOmics) integrating pathology and genomics insights into colon-related cancer survival prediction.
We emphasize the unsupervised pretraining to capture the intrinsic interaction between tissue microenvironments in gigapixel whole slide images.
We evaluate our approach on both TCGA colon and rectum cancer cohorts, showing that the proposed approach is competitive and outperforms state-of-the-art studies.
arXiv Detail & Related papers (2023-07-22T00:59:26Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - RadioPathomics: Multimodal Learning in Non-Small Cell Lung Cancer for
Adaptive Radiotherapy [1.8161758803237067]
We develop a multimodal late fusion approach to predict radiation therapy outcomes for non-small-cell lung cancer patients.
Experiments show that the proposed multimodal paradigm with an AUC equal to $90.9%$ outperforms each unimodal approach.
arXiv Detail & Related papers (2022-04-26T16:32:52Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - Deep-CR MTLR: a Multi-Modal Approach for Cancer Survival Prediction with
Competing Risks [0.4189643331553922]
We present Deep-CR MTLR -- a novel machine learning approach for accurate cancer survival prediction.
We demonstrate improved prognostic performance of the multi-modal approach over single modality predictors in a cohort of 2552 head and neck cancer patients.
arXiv Detail & Related papers (2020-12-10T15:51:47Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Divide-and-Rule: Self-Supervised Learning for Survival Analysis in
Colorectal Cancer [9.431791041887957]
We propose a self-supervised learning method that learns a representation of tissue regions as well as a metric of the clustering to obtain their underlying patterns.
We show that the proposed approach can benefit from linear predictors to avoid overfitting in patient outcomes predictions.
arXiv Detail & Related papers (2020-07-07T09:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.