論文の概要: Ridge Regression for Manifold-valued Time-Series with Application to Meteorological Forecast
- arxiv url: http://arxiv.org/abs/2411.18339v1
- Date: Wed, 27 Nov 2024 13:36:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:25:26.648875
- Title: Ridge Regression for Manifold-valued Time-Series with Application to Meteorological Forecast
- Title(参考訳): Manifold-valued Time-Series のリッジ回帰と気象予報への応用
- Authors: Esfandiar Nava-Yazdani,
- Abstract要約: ユークリッド空間から一般方程式へのリッジ回帰の自然な内在的拡張を提案する。
時系列予測に利用し,ハリケーントラックとその風速の予測にアプローチを適用する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We propose a natural intrinsic extension of the ridge regression from Euclidean spaces to general manifolds, which relies on Riemannian least-squares fitting, empirical covariance, and Mahalanobis distance. We utilize it for time-series prediction and apply the approach to forecast hurricane tracks and their wind speeds.
- Abstract(参考訳): ユークリッド空間から一般多様体へのリッジ回帰の自然な内在的拡張を提案し、これはリーマン多様体の最小二乗フィッティング、経験的共分散、マハラノビス距離に依存する。
時系列予測に利用し,ハリケーントラックとその風速の予測にアプローチを適用する。
関連論文リスト
- Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
ストリーミングデータにおける将来の軌跡を問うベンチマークを導入し,これを「ストリーミング予測」と呼ぶ。
我々のベンチマークは本質的に、スナップショットベースのベンチマークでは見過ごされていない安全上の問題であるエージェントの消失と再出現を捉えている。
我々は,任意のスナップショットベースの予測器をストリーミング予測器に適応させることのできる,"Predictive Streamer"と呼ばれるプラグアンドプレイメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-02T17:13:16Z) - Improving Forecasts for Heterogeneous Time Series by "Averaging", with
Application to Food Demand Forecast [0.609170287691728]
本稿では,k-Nearest Neighbor方式で近隣地区を構築するために,動的時間ワープの類似度を利用した一般的なフレームワークを提案する。
平均化を行ういくつかの方法が提案され、理論的議論は平均化が予測に有用であることを示す。
論文 参考訳(メタデータ) (2023-06-12T13:52:30Z) - Mixed moving average field guided learning for spatio-temporal data [0.0]
我々は,新しいベイズ時間埋め込みと理論誘導型機械学習アプローチを定義し,アンサンブル予測を行う。
リプシッツ予測器を用いて、バッチ学習環境における固定時間および任意の時間PACを決定する。
次に、線形予測器とOrnstein-Uhlenbeckプロセスからシミュレーションしたデータセットを用いて学習手法の性能を検証した。
論文 参考訳(メタデータ) (2023-01-02T16:11:05Z) - Spatiotemporal forecasting of track geometry irregularities with
exogenous factors [0.0]
提案手法は、畳み込み短期記憶(ConvLSTM)を用いて、要因を埋め込んで時間的相関を捉える。
その結果,空間計算とメンテナンス記録データにより,垂直アライメントの予測精度が向上することが判明した。
論文 参考訳(メタデータ) (2022-11-07T13:38:27Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Data-Based Models for Hurricane Evolution Prediction: A Deep Learning
Approach [0.0]
ここで提示される多対多のRNN嵐軌道予測モデルは、NHCが使用するアンサンブルモデルよりもはるかに高速である。
モデル予測誤差の詳細な解析により,多対一予測モデルは複合的エラー蓄積による多対多予測モデルよりも精度が低いことが示された。
論文 参考訳(メタデータ) (2021-10-30T00:31:48Z) - Sparse Generalized Yule-Walker Estimation for Large Spatio-temporal
Autoregressions with an Application to NO2 Satellite Data [0.0]
高次元モデルのクラスをスパース推定する。
我々は,ユル=ヴァルカー方程式の集合をペナルティ化することにより,空間的および時間的依存を完全駆動的に支配する関係を推定する。
衛星シミュレーションは、競合する手順と比較して強い有限サンプル性能を示す。
論文 参考訳(メタデータ) (2021-08-05T21:51:45Z) - Instance-Optimal Compressed Sensing via Posterior Sampling [101.43899352984774]
後部サンプリング推定器がほぼ最適回復保証を達成できることを示す。
本稿では,Langevin dynamics を用いた深部生成前駆体の後方サンプリング推定器を実装し,MAP よりも精度の高い推定値が得られることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-21T22:51:56Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。