論文の概要: Preserving Information: How does Topological Data Analysis improve Neural Network performance?
- arxiv url: http://arxiv.org/abs/2411.18410v1
- Date: Wed, 27 Nov 2024 14:56:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:27:57.309298
- Title: Preserving Information: How does Topological Data Analysis improve Neural Network performance?
- Title(参考訳): 情報保存: トポロジカルデータ分析はニューラルネットワークの性能をどのように改善するか?
- Authors: A. Stolarek, W. Jaworek,
- Abstract要約: 本稿では,画像認識におけるトポロジカルデータ解析(TDA)と畳み込みニューラルネットワーク(CNN)の統合手法を提案する。
我々のアプローチは、ベクトルスチッチ(Vector Stitching)と呼ばれ、生画像データと追加のトポロジ情報を組み合わせたものである。
実験の結果は,追加データ解析の結果をネットワークの推論プロセスに組み込むことの可能性を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Artificial Neural Networks (ANNs) require significant amounts of data and computational resources to achieve high effectiveness in performing the tasks for which they are trained. To reduce resource demands, various techniques, such as Neuron Pruning, are applied. Due to the complex structure of ANNs, interpreting the behavior of hidden layers and the features they recognize in the data is challenging. A lack of comprehensive understanding of which information is utilized during inference can lead to inefficient use of available data, thereby lowering the overall performance of the models. In this paper, we introduce a method for integrating Topological Data Analysis (TDA) with Convolutional Neural Networks (CNN) in the context of image recognition. This method significantly enhances the performance of neural networks by leveraging a broader range of information present in the data, enabling the model to make more informed and accurate predictions. Our approach, further referred to as Vector Stitching, involves combining raw image data with additional topological information derived through TDA methods. This approach enables the neural network to train on an enriched dataset, incorporating topological features that might otherwise remain unexploited or not captured by the network's inherent mechanisms. The results of our experiments highlight the potential of incorporating results of additional data analysis into the network's inference process, resulting in enhanced performance in pattern recognition tasks in digital images, particularly when using limited datasets. This work contributes to the development of methods for integrating TDA with deep learning and explores how concepts from Information Theory can explain the performance of such hybrid methods in practical implementation environments.
- Abstract(参考訳): 人工ニューラルネットワーク(ANN)は、トレーニングされたタスクを実行する上で高い効率を達成するために、大量のデータと計算資源を必要とする。
資源需要を減らすため、ニューロンプルーニングなどの様々な技術が適用されている。
ANNの複雑な構造のため、隠れたレイヤの振る舞いと、それらがデータで認識する特徴を解釈することは困難である。
推論中に情報を利用するための包括的な理解の欠如は、利用可能なデータの非効率な利用につながる可能性があるため、モデル全体のパフォーマンスが低下する。
本稿では,画像認識におけるトポロジカルデータ解析(TDA)と畳み込みニューラルネットワーク(CNN)の統合手法を提案する。
この手法は、データに含まれる幅広い情報を活用することにより、ニューラルネットワークの性能を大幅に向上させ、より情報的かつ正確な予測を可能にする。
我々のアプローチは、ベクトルスチッチと呼ばれるもので、生画像データとTDA法で導出された追加の位相情報を組み合わせたものである。
このアプローチにより、ニューラルネットワークは、強化されたデータセット上でトレーニングすることが可能になり、それ以外は、ネットワーク固有のメカニズムによって、公開されていないか、キャプチャされないかの可能性のあるトポロジ的特徴が組み込まれる。
実験の結果は、ネットワークの推論プロセスに追加データ分析の結果を組み込むことの可能性を強調し、特に限られたデータセットを使用する場合、デジタル画像におけるパターン認識タスクのパフォーマンスが向上することを示した。
本研究は,TDAを深層学習と統合する手法の開発に寄与し,情報理論の概念が実践的実装環境におけるハイブリッド手法の性能をいかに説明できるかを考察する。
関連論文リスト
- Deep-and-Wide Learning: Enhancing Data-Driven Inference via Synergistic Learning of Inter- and Intra-Data Representations [8.013386998355966]
現在のディープニューラルネットワーク(DNN)モデルは、大量のデータと計算リソースの要求など、いくつかの課題に直面している。
本稿では,DWL(Deep-and-wide Learning)と呼ばれる新しい学習手法を導入する。
我々はDWLが最先端のDNNの精度を、限られた訓練データでかなりの差で上回っていることを示す。
論文 参考訳(メタデータ) (2025-01-28T23:47:34Z) - Enhancing Neural Network Interpretability Through Conductance-Based Information Plane Analysis [0.0]
インフォメーションプレーン(Information Plane)は、ニューラルネットワーク内の情報の流れを分析するための概念的フレームワークである。
本稿では,入力特徴に対する感度尺度であるレイヤコンダクタンスを用いて情報平面解析を強化する手法を提案する。
論文 参考訳(メタデータ) (2024-08-26T23:10:42Z) - Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks [7.956678963695681]
スパースコーディングとディープラーニングの交差点を探索し,特徴抽出能力の理解を深める。
我々は、畳み込みニューラルネットワーク(CNN)のスパース特徴抽出能力の収束率を導出する。
スパースコーディングとCNNの強いつながりにインスパイアされた私たちは、ニューラルネットワークがよりスパースな機能を学ぶように促すトレーニング戦略を探求する。
論文 参考訳(メタデータ) (2024-08-10T12:43:55Z) - Image classification network enhancement methods based on knowledge
injection [8.885876832491917]
本稿では,多段階階層型ディープラーニングアルゴリズムを提案する。
マルチレベルの階層型ディープラーニングアーキテクチャと、マルチレベルの階層型ディープラーニングフレームワークで構成されている。
実験の結果,提案アルゴリズムはニューラルネットワークの隠れた情報を効果的に説明できることがわかった。
論文 参考訳(メタデータ) (2024-01-09T09:11:41Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
トポロジカル・データ解析は、複雑な構造のコンパクトでノイズ・ロバストな表現を提供する。
ディープニューラルネットワーク(DNN)は、モデルアーキテクチャによって定義された一連の変換に関連する数百万のパラメータを学習する。
本稿では,画像分類に使用される畳み込みニューラルネットワークの解釈可能性に関する知見を得る目的で,TDAの最先端技術を適用した。
論文 参考訳(メタデータ) (2022-12-01T02:05:44Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
ニューラルネットワークトレーニングにおける2つの要因として,データ並列性と疎性について検討する。
有望なメリットにもかかわらず、ニューラルネットワークトレーニングに対する彼らの影響を理解することは、依然として明白である。
論文 参考訳(メタデータ) (2020-03-25T10:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。