Strongly Coupled PT-Symmetric Models in Holography
- URL: http://arxiv.org/abs/2411.18471v1
- Date: Wed, 27 Nov 2024 16:07:38 GMT
- Title: Strongly Coupled PT-Symmetric Models in Holography
- Authors: Daniel Arean, David Garcia-Fariña, Karl Landsteiner,
- Abstract summary: We review the construction of holographic duals to strongly coupled PT-symmetric quantum field theories.<n>We focus on spacetime-dependent non-Hermitian couplings: non-Hermitian quenches and lattices.<n>Remarkably, these non-Hermitian lattices flow to a PT-symmetric fixed point in the IR.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-Hermitian quantum field theories are a promising tool to study open quantum systems. These theories preserve unitarity if PT-symmetry is respected, and in that case an equivalent Hermitian description exists via the so-called Dyson map. Generically, PT-symmetric non-Hermitian theories can also feature phases where PT-symmetry is broken and unitarity is lost. We review the construction of holographic duals to strongly coupled PT-symmetric quantum field theories and the study of their phase diagram. We next focus on spacetime-dependent non-Hermitian couplings: non-Hermitian quenches and lattices. They violate the null energy condition in the gravity dual. The lattices realize phases supporting an imaginary current that breaks PT-symmetry spontaneously. Remarkably, these non-Hermitian lattices flow to a PT-symmetric fixed point in the IR.
Related papers
- Observation of non-Hermitian bulk-boundary correspondence in non-chiral non-unitary quantum dynamics of single photons [31.05848822220465]
In non-Hermitian systems, preserved chiral symmetry is one of the key ingredients, which plays a pivotal role in determining non-Hermitian topology.
We theoretically predict and experimentally demonstrate the bulk-boundary correspondence of a one-dimensional (1D) non-Hermitian system with chiral symmetry breaking.
arXiv Detail & Related papers (2025-04-07T09:43:43Z) - Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.
We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.
We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - Controlling Symmetries and Quantum Criticality in the Anisotropic Coupled-Top Model [32.553027955412986]
We investigate the anisotropic coupled-top model, which describes the interactions between two large spins along both $x-$ and $y-$directions.
We can manipulate the system's symmetry, inducing either discrete $Z$ or continuous U(1) symmetry.
The framework provides an ideal platform for experimentally controlling symmetries and investigating associated physical phenomena.
arXiv Detail & Related papers (2025-02-13T15:14:29Z) - Long-range entanglement from spontaneous non-onsite symmetry breaking [3.3754780158324564]
We show a frustration-free lattice model exhibiting SSB of a non-onsite symmetry.
We analytically prove the two-fold ground-state degeneracy and the existence of a finite energy gap.
Our work reveals the exotic features of SSB of non-onsite symmetries, which may lie beyond the framework of topological holography.
arXiv Detail & Related papers (2024-11-07T18:59:51Z) - Holographic Non-Hermitian Lattices and Junctions with PT-Restoring RG Flows [0.0]
We study inhomogenoeus non-Hermitian strongly coupled holographic field theories.
We find solutions that spontaneously break PT and solutions that do not.
This leads us to claim that there is a PT-symmetry restoration in the IR, similar to the one observed in the perturbative setup of arXiv:2110.05289.
arXiv Detail & Related papers (2024-10-17T14:20:26Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Non-Hermitian Aubry-André-Harper model with short- and long-range p-wave pairing [14.37149160708975]
We investigate a non-Hermitian Aubry-Andr'e-Harper model with short-range, as well as long-range p-wave pairing.
We observe the emergence of Majorana zero modes in the case of short-range pairing, whereas massive Dirac modes emerge in the case of long-range pairing.
arXiv Detail & Related papers (2023-11-08T11:14:10Z) - Quantum PT-Phase Diagram in a Non-Hermitian Photonic Structure [9.850404959345031]
We analytically obtained the quantum PT-phase diagram under the steady state condition.
This diagram paves the way to the quantum state engineering, quantum interferences, and logic operations in non-Hermitian photonic systems.
arXiv Detail & Related papers (2023-03-01T02:36:40Z) - Scale-free localization and PT symmetry breaking from local
non-Hermiticity [7.414433047076195]
We show that a local non-Hermitian perturbation in a Hermitian lattice system generically induces scale-free localization for the continuous-spectrum eigenstates.
Our results uncover a series of unexpected generic phenomena induced by a local non-Hermitian perturbation.
arXiv Detail & Related papers (2023-02-08T18:43:51Z) - Uncertainty Relation for Non-Hermitian Systems [0.0]
We show that the cumulative gain in the quantum Fisher information when measuring two good observables for such non-Hermitian systems is way better than their Hermitian counterpart.
arXiv Detail & Related papers (2022-06-06T18:34:21Z) - Discrete spacetime symmetries, second quantization, and inner products
in a non-Hermitian Dirac fermionic field theory [0.0]
We consider a prototype model containing a single Dirac fermion with a parity-odd, anti-Hermitian mass term.
In the phase of unbroken PT symmetry, this Dirac fermion model is equivalent to a Hermitian theory under a similarity transformation.
arXiv Detail & Related papers (2022-01-26T17:12:36Z) - The phase diagram and vortex properties of PT-symmetric non-Hermitian
two-component superfluid [0.0]
We discuss the phase diagram and properties of global vortices in the non-Hermitian parity-time-symmetric relativistic model.
In the long-range limit of two-component Bose-Einstein condensates, the vortices from different condensates experience mutual dissipative dynamics unless their cores overlap precisely.
arXiv Detail & Related papers (2021-05-16T15:30:48Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Discrete spacetime symmetries and particle mixing in non-Hermitian
scalar quantum field theories [0.0]
We discuss second quantization, discrete symmetry transformations and inner products in free non-Hermitian quantum field theories with PT symmetry.
We focus on a prototype model of two complex scalar fields with anti-Hermitian mass mixing.
arXiv Detail & Related papers (2020-06-11T17:48:51Z) - Observation of Hermitian and Non-Hermitian Diabolic Points and
Exceptional Rings in Parity-Time symmetric ZRC and RLC Dimers [62.997667081978825]
We show how appears non-Hermitian degeneracy points in the spectrum and how they are protected against a Hermitian perturbation.
This work opens a gold road for investigations on topological electrical circuits for robust transport of information at room temperature.
arXiv Detail & Related papers (2020-04-17T15:51:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.