Increasing quantum speed limit via non-uniform magnetic field
- URL: http://arxiv.org/abs/2411.18687v1
- Date: Wed, 27 Nov 2024 19:00:06 GMT
- Title: Increasing quantum speed limit via non-uniform magnetic field
- Authors: Srishty Aggarwal, Banibrata Mukhopadhyay, Subhashish Banerjee, Arindam Ghosh, Gianluca Gregori,
- Abstract summary: Quantum speed limit (QSL) defines the theoretical upper bound on how fast a quantum system can evolve between states.
We show that by using variable magnetic fields, it is possible to surpass this limit, achieving SQSL upto 0.4-0.6c.
- Score: 1.7259860418331325
- License:
- Abstract: Quantum speed limit (QSL) defines the theoretical upper bound on how fast a quantum system can evolve between states. It imposes a fundamental constraint on the rate of quantum information processing. For a relativistic spin-up electron in a uniform magnetic field, QSL increased with the magnetic field strength till around $10^{15}$ Gauss, before saturating at a saturated QSL (SQSL) of 0.2407c, where c is the speed of light. We show that by using variable magnetic fields, it is possible to surpass this limit, achieving SQSL upto 0.4-0.6c. To attain this quantum phenomenon, we solve the evolution equation of relativistic electron in spatially varying magnetic fields and find that the energies of various electron states become non-degenerate as opposed to the constant magnetic field case. This redistribution of energy is the key ingredient to accomplish higher QSL and, thus, a high information processing speed. We further explore how QSL can serve as a bridge between relativistic and non-relativistic quantum dynamics, providing insights via the Bremermann-Bekenstein bound, a quantity which constrains the maximal rate of information production. We also propose a practical experimental setup to realize these advancements. These results hold immense potential for propelling fields of quantum computation, thermodynamics and metrology.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Quantum State Transfer in a Magnetic Atoms Chain Using a Scanning Tunneling Microscope [44.99833362998488]
The electric control of quantum spin chains has been an outstanding goal for the few last years due to its potential use in technologies related to quantum information processing.
We show the feasibility of the different steps necessary to perform controlled quantum state transfer in a $S=1/2$ titanium atoms chain employing the electric field produced by a Scanning Tunneling Microscope (STM)
arXiv Detail & Related papers (2024-08-13T14:45:46Z) - Experimental Investigation of Geometric Quantum Speed Limits in an Open Quantum System [0.0]
We studied geometric quantum speed limits (QSL) of a qubit subject to decoherence in an ensemble of chloroform molecules.
We used two distinguishability measures of quantum states to assess the speed of the qubit evolution.
arXiv Detail & Related papers (2023-07-13T04:55:00Z) - Stronger Quantum Speed Limit [0.0]
We prove a stronger quantum speed limit (SQSL) for all quantum systems undergoing arbitrary unitary evolution.
The stronger quantum speed limit will have wide range of applications in quantum control, quantum computing and quantum information processing.
arXiv Detail & Related papers (2022-08-10T17:56:51Z) - Generalised quantum speed limit for arbitrary time-continuous evolution [0.0]
We derive a generalised quantum speed limit (GQSL) for arbitrary time-continuous evolution using the geometrical approach of quantum mechanics.
The GQSL is applicable for quantum systems undergoing unitary, non-unitary, completely positive, non-completely positive and relativistic quantum dynamics.
arXiv Detail & Related papers (2022-07-08T21:00:11Z) - Non-uniform magnetic field as a booster for quantum speed limit: faster
quantum information processing [0.0]
We show that the quantum speed limit increases to a large value, but within the regime of causality, by choosing a proper variation in magnetic fields.
We use the Bremermann--Bekenstein bound to find a critical magnetic field that bridges the gap between non-relativistic and relativistic treatments.
arXiv Detail & Related papers (2021-12-08T19:00:15Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum speed limit time for topological qubit influenced by fermionic
and bosonic environment [0.0]
Quantum speed limit time can be used to determine the rate of quantum evolution for closed and open quantum systems.
We consider the topological qubit influenced by fermionic and bosonic environment.
It is observed that with increasing magnitude of magnetic field, the quantum speed limit time decreases.
arXiv Detail & Related papers (2020-11-28T19:10:51Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.