論文の概要: An Integrated Artificial Intelligence Operating System for Advanced Low-Altitude Aviation Applications
- arxiv url: http://arxiv.org/abs/2411.18845v2
- Date: Sun, 05 Jan 2025 05:28:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:03:53.300340
- Title: An Integrated Artificial Intelligence Operating System for Advanced Low-Altitude Aviation Applications
- Title(参考訳): 高度低高度航空用統合人工知能オペレーティングシステム
- Authors: Minzhe Tan, Xinlin Fan, Jian He, Yi Hou, Zhan Liu, Yaopeng Jiang, Y. M. Jiang,
- Abstract要約: 本稿では,低高度航空に適した高性能人工知能オペレーティングシステムを提案する。
リアルタイムタスク実行、計算効率、シームレスなモジュールコラボレーションといった重要な課題に対処する。
- 参考スコア(独自算出の注目度): 4.62967829580797
- License:
- Abstract: This paper introduces a high-performance artificial intelligence operating system tailored for low-altitude aviation, designed to address key challenges such as real-time task execution, computational efficiency, and seamless modular collaboration. Built on a powerful hardware platform and leveraging the UNIX architecture, the system implements a distributed data processing strategy that ensures rapid and efficient synchronization across critical modules, including vision, navigation, and perception. By adopting dynamic resource management, it optimally allocates computational resources, such as CPU and GPU, based on task priority and workload, ensuring high performance for demanding tasks like real-time video processing and AI model inference. Furthermore, the system features an advanced interrupt handling mechanism that allows for quick responses to sudden environmental changes, such as obstacle detection, by prioritizing critical tasks, thus improving safety and mission success rates. Robust security measures, including data encryption, access control, and fault tolerance, ensure the system's resilience against external threats and its ability to recover from potential hardware or software failures. Complementing these core features are modular components for image analysis, multi-sensor fusion, dynamic path planning, multi-drone coordination, and ground station monitoring. Additionally, a low-code development platform simplifies user customization, making the system adaptable to various mission-specific needs. This comprehensive approach ensures the system meets the evolving demands of intelligent aviation, providing a stable, efficient, and secure environment for complex drone operations.
- Abstract(参考訳): 本稿では,リアルタイムタスク実行や計算効率,シームレスなモジュールコラボレーションといった重要な課題に対処するために,低高度飛行に適した高性能人工知能オペレーティングシステムを提案する。
強力なハードウェアプラットフォーム上に構築され、UNIXアーキテクチャを活用するシステムは、ビジョン、ナビゲーション、知覚を含む重要なモジュール間の迅速かつ効率的な同期を保証する分散データ処理戦略を実装している。
動的リソース管理を採用することで、タスクの優先度とワークロードに基づいて、CPUやGPUなどの計算リソースを最適に割り当て、リアルタイムビデオ処理やAIモデル推論といったタスク要求のハイパフォーマンスを保証する。
さらに、重要なタスクの優先順位付けにより、障害検出などの突然の環境変化に対する迅速な応答を可能とし、安全性とミッション成功率を向上する、高度な割り込み処理機構を備えている。
データ暗号化、アクセス制御、フォールトトレランスといったロバストなセキュリティ対策は、外部の脅威に対するシステムのレジリエンスと、潜在的なハードウェアやソフトウェア障害から回復する能力を保証する。
これらのコア機能は、画像解析、マルチセンサー融合、動的経路計画、マルチドローン調整、地上局監視のためのモジュラーコンポーネントを補完する。
さらに、ローコード開発プラットフォームは、ユーザのカスタマイズを単純化し、様々なミッション固有のニーズに適応できるようにします。
この包括的なアプローチにより、システムはインテリジェント航空の進化する要求を満たすことができ、複雑なドローン運用のための安定的で効率的で安全な環境を提供する。
関連論文リスト
- TRIFFID: Autonomous Robotic Aid For Increasing First Responders Efficiency [33.20746728498466]
本稿では,無人航空機と高度人工知能機能を組み合わせたTRIFFIDシステムを提案する。
提案システムは,高度なミッション計画,安全監視,適応型タスク実行機能を提供することで,緊急対応チームを強化する。
論文 参考訳(メタデータ) (2025-02-13T14:46:40Z) - Secure Resource Allocation via Constrained Deep Reinforcement Learning [49.15061461220109]
リソース割り当て、タスクオフロード、セキュリティ、パフォーマンスのバランスをとるフレームワークであるSARMTOを紹介します。
SARMTOは5つのベースラインアプローチを一貫して上回り、最大40%のシステムコスト削減を実現している。
これらの拡張は、複雑な分散コンピューティング環境におけるリソース管理に革命をもたらすSARMTOの可能性を強調している。
論文 参考訳(メタデータ) (2025-01-20T15:52:43Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - Cooperative Cognitive Dynamic System in UAV Swarms: Reconfigurable Mechanism and Framework [80.39138462246034]
UAVスワムの管理を最適化するための協調認知力学システム(CCDS)を提案する。
CCDSは階層的かつ協調的な制御構造であり、リアルタイムのデータ処理と意思決定を可能にする。
さらに、CCDSは、UAVスワムのタスクを効率的に割り当てるための生体模倣機構と統合することができる。
論文 参考訳(メタデータ) (2024-05-18T12:45:00Z) - Synergising Human-like Responses and Machine Intelligence for Planning in Disaster Response [10.294618771570985]
デュアルプロセス理論(DPT)にインスパイアされた注意に基づく認知アーキテクチャを提案する。
このフレームワークは、高速だが(人間のような)応答と、遅いが最適化されたマシンインテリジェンスの計画能力を統合する。
論文 参考訳(メタデータ) (2024-04-15T15:47:08Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
無人航空機(UAV)ネットワークはIoT(Internet-of-Things)を支援するための有望な技術である
既存のUAV支援データ収集および普及スキームでは、UAVはIoTとアクセスポイントの間を頻繁に飛行する必要がある。
協調ビームフォーミングをIoTとUAVに同時に導入し、エネルギーと時間効率のデータ収集と普及を実現した。
論文 参考訳(メタデータ) (2023-08-03T02:49:50Z) - Synergistic Redundancy: Towards Verifiable Safety for Autonomous
Vehicles [10.277825331268179]
我々は、自律走行車(AV)のような複雑なサイバー物理システムのための安全アーキテクチャとして、シナジスティック冗長性(SR)を提案する。
SRは、システムのミッションと安全タスクを分離することで、特定の障害に対する検証可能な安全保証を提供する。
ミッション層との密接な調整により、システム内の安全クリティカルな障害を容易かつ早期に検出することができる。
論文 参考訳(メタデータ) (2022-09-04T23:52:03Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Tackling Variabilities in Autonomous Driving [15.374442918002813]
可変性のある自動運転タスクのためのハードウェア基板を提供するために、新しい異種マルチコアAIアクセラレータ(HMAI)を提案します。
また,タスクマッピング問題を解決するために,深層強化学習(RL)に基づくタスクスケジューリング機構FlexAIを提案する。
論文 参考訳(メタデータ) (2021-04-21T08:51:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。