Random Sampling for Diffusion-based Adversarial Purification
- URL: http://arxiv.org/abs/2411.18956v1
- Date: Thu, 28 Nov 2024 07:04:09 GMT
- Title: Random Sampling for Diffusion-based Adversarial Purification
- Authors: Jiancheng Zhang, Peiran Dong, Yongyong Chen, Yin-Ping Zhao, Song Guo,
- Abstract summary: Denoising Diffusion Probabilistic Models (DDPMs) have gained great attention in adversarial purification.
Inspired by the stability of the Denoising Diffusion Implicit Model (DDIM), we propose an opposite sampling scheme called random sampling.
In brief, random sampling will sample from a random noisy space during each diffusion process, while DDPM and DDIM sampling will continuously sample from the adjacent or original noisy space.
- Score: 21.401448516056686
- License:
- Abstract: Denoising Diffusion Probabilistic Models (DDPMs) have gained great attention in adversarial purification. Current diffusion-based works focus on designing effective condition-guided mechanisms while ignoring a fundamental problem, i.e., the original DDPM sampling is intended for stable generation, which may not be the optimal solution for adversarial purification. Inspired by the stability of the Denoising Diffusion Implicit Model (DDIM), we propose an opposite sampling scheme called random sampling. In brief, random sampling will sample from a random noisy space during each diffusion process, while DDPM and DDIM sampling will continuously sample from the adjacent or original noisy space. Thus, random sampling obtains more randomness and achieves stronger robustness against adversarial attacks. Correspondingly, we also introduce a novel mediator conditional guidance to guarantee the consistency of the prediction under the purified image and clean image input. To expand awareness of guided diffusion purification, we conduct a detailed evaluation with different sampling methods and our random sampling achieves an impressive improvement in multiple settings. Leveraging mediator-guided random sampling, we also establish a baseline method named DiffAP, which significantly outperforms state-of-the-art (SOTA) approaches in performance and defensive stability. Remarkably, under strong attack, our DiffAP even achieves a more than 20% robustness advantage with 10$\times$ sampling acceleration.
Related papers
- Single-Step Consistent Diffusion Samplers [8.758218443992467]
Existing sampling algorithms typically require many iterative steps to produce high-quality samples.
We introduce consistent diffusion samplers, a new class of samplers designed to generate high-fidelity samples in a single step.
We show that our approach yields high-fidelity samples using less than 1% of the network evaluations required by traditional diffusion samplers.
arXiv Detail & Related papers (2025-02-11T14:25:52Z) - CCS: Controllable and Constrained Sampling with Diffusion Models via Initial Noise Perturbation [9.12693573953231]
We first observe an interesting phenomenon: the relationship between the change of generation outputs and the scale of initial noise perturbation is highly linear through the diffusion ODE sampling.
We propose a novel Controllable and Constrained Sampling method (CCS) together with a new controller algorithm for diffusion models to sample with desired statistical properties.
Results show that our CCS method achieves more precisely controlled sampling while maintaining superior sample quality and diversity.
arXiv Detail & Related papers (2025-02-07T05:30:48Z) - Arbitrary-steps Image Super-resolution via Diffusion Inversion [68.78628844966019]
This study presents a new image super-resolution (SR) technique based on diffusion inversion, aiming at harnessing the rich image priors encapsulated in large pre-trained diffusion models to improve SR performance.
We design a Partial noise Prediction strategy to construct an intermediate state of the diffusion model, which serves as the starting sampling point.
Once trained, this noise predictor can be used to initialize the sampling process partially along the diffusion trajectory, generating the desirable high-resolution result.
arXiv Detail & Related papers (2024-12-12T07:24:13Z) - Your Diffusion Model is Secretly a Noise Classifier and Benefits from Contrastive Training [20.492630610281658]
Diffusion models learn to denoise data and the trained denoiser is then used to generate new samples from the data distribution.
We introduce a new self-supervised training objective that differentiates the levels of noise added to a sample.
We show by diverse experiments that the proposed contrastive diffusion training is effective for both sequential and parallel settings.
arXiv Detail & Related papers (2024-07-12T03:03:50Z) - Boosting Diffusion Models with Moving Average Sampling in Frequency Domain [101.43824674873508]
Diffusion models rely on the current sample to denoise the next one, possibly resulting in denoising instability.
In this paper, we reinterpret the iterative denoising process as model optimization and leverage a moving average mechanism to ensemble all the prior samples.
We name the complete approach "Moving Average Sampling in Frequency domain (MASF)"
arXiv Detail & Related papers (2024-03-26T16:57:55Z) - Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution [82.50210340928173]
randomness of diffusion models results in ineffectiveness and instability, making it challenging for users to guarantee the quality of SR results.
We propose a plug-and-play sampling method that owns the potential to benefit a series of diffusion-based SR methods.
The quality of SR results sampled by the proposed method with fewer steps outperforms the quality of results sampled by current methods with randomness from the same pre-trained diffusion-based SR model.
arXiv Detail & Related papers (2023-05-24T17:09:54Z) - DensePure: Understanding Diffusion Models towards Adversarial Robustness [110.84015494617528]
We analyze the properties of diffusion models and establish the conditions under which they can enhance certified robustness.
We propose a new method DensePure, designed to improve the certified robustness of a pretrained model (i.e. a classifier)
We show that this robust region is a union of multiple convex sets, and is potentially much larger than the robust regions identified in previous works.
arXiv Detail & Related papers (2022-11-01T08:18:07Z) - Accelerating Diffusion Models via Early Stop of the Diffusion Process [114.48426684994179]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved impressive performance on various generation tasks.
In practice DDPMs often need hundreds even thousands of denoising steps to obtain a high-quality sample.
We propose a principled acceleration strategy, referred to as Early-Stopped DDPM (ES-DDPM), for DDPMs.
arXiv Detail & Related papers (2022-05-25T06:40:09Z) - Denoising Diffusion Implicit Models [117.03720513930335]
We present denoising diffusion implicit models (DDIMs) for iterative implicit probabilistic models with the same training procedure as DDPMs.
DDIMs can produce high quality samples $10 times$ to $50 times$ faster in terms of wall-clock time compared to DDPMs.
arXiv Detail & Related papers (2020-10-06T06:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.