論文の概要: Puzzle: Distillation-Based NAS for Inference-Optimized LLMs
- arxiv url: http://arxiv.org/abs/2411.19146v1
- Date: Thu, 28 Nov 2024 13:45:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 20:28:07.795171
- Title: Puzzle: Distillation-Based NAS for Inference-Optimized LLMs
- Title(参考訳): Puzzle:推論最適化LDMのための蒸留系NAS
- Authors: Akhiad Bercovich, Tomer Ronen, Talor Abramovich, Nir Ailon, Nave Assaf, Mohammad Dabbah, Ido Galil, Amnon Geifman, Yonatan Geifman, Izhak Golan, Netanel Haber, Ehud Karpas, Itay Levy, Shahar Mor, Zach Moshe, Najeeb Nabwani, Omri Puny, Ran Rubin, Itamar Schen, Ido Shahaf, Oren Tropp, Omer Ullman Argov, Ran Zilberstein, Ran El-Yaniv,
- Abstract要約: 大規模言語モデル(LLM)は目覚ましい能力を示しているが、その採用は推論時に高い計算コストによって制限されている。
本稿では,特定のハードウェア上でLLM推論を高速化するフレームワークであるPuzzleについて述べる。
Nemotron-51Bは、バッチサイズが大きい単一のGPU上で推論できる最も正確な言語モデルである。
- 参考スコア(独自算出の注目度): 14.558558586641569
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities, but their adoption is limited by high computational costs during inference. While increasing parameter counts enhances accuracy, it also widens the gap between state-of-the-art capabilities and practical deployability. We present Puzzle, a framework to accelerate LLM inference on specific hardware while preserving their capabilities. Through an innovative application of neural architecture search (NAS) at an unprecedented scale, Puzzle systematically optimizes models with tens of billions of parameters under hardware constraints. Our approach utilizes blockwise local knowledge distillation (BLD) for parallel architecture exploration and employs mixed-integer programming for precise constraint optimization. We demonstrate the real-world impact of our framework through Llama-3.1-Nemotron-51B-Instruct (Nemotron-51B), a publicly available model derived from Llama-3.1-70B-Instruct. Nemotron-51B achieves a 2.17x inference throughput speedup, fitting on a single NVIDIA H100 GPU while preserving 98.4% of the original model's capabilities. Nemotron-51B currently stands as the most accurate language model capable of inference on a single GPU with large batch sizes. Remarkably, this transformation required just 45B training tokens, compared to over 15T tokens used for the 70B model it was derived from. This establishes a new paradigm where powerful models can be optimized for efficient deployment with only negligible compromise of their capabilities, demonstrating that inference performance, not parameter count alone, should guide model selection. With the release of Nemotron-51B and the presentation of the Puzzle framework, we provide practitioners immediate access to state-of-the-art language modeling capabilities at significantly reduced computational costs.
- Abstract(参考訳): 大規模言語モデル(LLM)は目覚ましい能力を示しているが、その採用は推論時に高い計算コストによって制限されている。
パラメータ数の増加は精度を高めるが、最先端の能力と実践的なデプロイ可能性の間のギャップを拡大する。
本稿では,特定のハードウェア上でLLM推論を高速化するフレームワークであるPuzzleについて述べる。
前例のない規模のニューラルアーキテクチャサーチ(NAS)の革新的な応用を通じて、Puzzleはハードウェア制約の下で数千億のパラメータを持つモデルを体系的に最適化する。
提案手法では,ブロックワイズ局所知識蒸留(BLD)を並列アーキテクチャ探索に利用し,厳密な制約最適化のために混合整数計画を用いる。
Llama-3.1-Nemotron-51B-Instruct (Nemotron-51B)はLlama-3.1-70B-Instructから派生した一般公開モデルである。
Nemotron-51Bは2.17倍のスループットを達成し、1つのNVIDIA H100 GPUに適合し、オリジナルのモデルの能力の98.4%を保っている。
Nemotron-51Bは現在、バッチサイズが大きい単一のGPU上で推論できる最も正確な言語モデルである。
注目すべきは、この変換には45Bのトレーニングトークンしか必要としなかったことだ。
これにより、強力なモデルを効率よくデプロイするために最適化できる新しいパラダイムが確立され、パラメータカウントだけでなく推論性能がモデル選択を導くことが示される。
Nemotron-51BのリリースとPuzzleフレームワークのプレゼンテーションにより、我々は、計算コストを大幅に削減し、最先端の言語モデリング機能への即時アクセスを提供する。
関連論文リスト
- Pangu Ultra: Pushing the Limits of Dense Large Language Models on Ascend NPUs [123.25404278506585]
135億のパラメータと高密度トランスフォーマーモジュールを持つ大規模言語モデル(LLM)であるPangu Ultraについて述べる。
このような大規模トレーニングを効率的に行うためには,8,192個のAscend NPUと一連のシステム最適化を用いる。
我々の調査では、Ascend NPUは1000億以上のパラメータを持つ高密度モデルを効率的かつ効果的に訓練できることを示した。
論文 参考訳(メタデータ) (2025-04-10T15:41:51Z) - Every FLOP Counts: Scaling a 300B Mixture-of-Experts LING LLM without Premium GPUs [96.68469559192846]
2つの異なる大きさのMoE大言語モデル(LLM)を提示する。
Ling-Liteは168億のパラメータと275億のアクティベートパラメータを持ち、Ling-Plusは2900億のパラメータと288億のアクティベートパラメータを持っている。
本稿では,(1)モデルアーキテクチャとトレーニングプロセスの最適化,(2)トレーニング異常処理の洗練,(3)モデル評価効率の向上のための革新的な手法を提案する。
論文 参考訳(メタデータ) (2025-03-07T04:43:39Z) - Democratizing AI: Open-source Scalable LLM Training on GPU-based Supercomputers [65.35142508909892]
AxoNNと呼ばれる,スケーラブルでポータブルなオープンソースフレームワークで実装された新しい4次元ハイブリッド並列アルゴリズムを提案する。
本稿では,Frontier 上で AxoNN を用いて405ビリオンパラメータ LLM の微調整を行う。
論文 参考訳(メタデータ) (2025-02-12T06:05:52Z) - CMoE: Fast Carving of Mixture-of-Experts for Efficient LLM Inference [33.871080938643566]
大規模言語モデル(LLM)はモデルパラメータのスケーリングによって素晴らしいパフォーマンスを達成するが、これはかなりの推論オーバーヘッドを伴う。
我々は,高密度モデルからMoEモデルを効率的に彫る新しいフレームワークであるCMoEを提案する。
CMoEは、効率的なエキスパートグループ化と軽量適応によって、優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-02-06T14:05:30Z) - MOFHEI: Model Optimizing Framework for Fast and Efficient Homomorphically Encrypted Neural Network Inference [0.8388591755871735]
ホモモルフィック暗号化(HE)により、暗号化データ上で機械学習タスクを実行できる。
HEに基づくニューラルネットワーク推論を高速かつ効率的にするためのモデルを最適化するフレームワークであるMOFHEIを提案する。
このフレームワークはLeNet上で最大98%のプルーニング比を実現し,PI実行に必要なHE操作の最大93%を排除した。
論文 参考訳(メタデータ) (2024-12-10T22:44:54Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
適応スパーストレーナー(AST)と呼ばれるリトレーニングによる半構造化スパースモデルのプルーニングパイプラインを提案する。
ASTは、モデルがトレーニングプロセスを通して適応的にマスクを選択することを可能にし、マスキング重みに減衰を施すことにより、密度の高いモデルをスパースモデルに変換する。
本研究は,半構造化されたスパース言語モデルの実現可能性を示し,高度に圧縮されたモデルを実現するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-30T06:33:44Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - XMoE: Sparse Models with Fine-grained and Adaptive Expert Selection [30.687511115573038]
ツールは、スパースMoEモデルの有効性と効率を高めるために設計された新しいMoEである。
パフォーマンスを犠牲にすることなく、MoE層の計算負荷を50%以上削減しながら、モデルパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-02-27T08:18:02Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [27.930351465266515]
本稿では,LVLMのための簡易かつ効果的なトレーニング戦略であるMoE-Tuningを提案する。
MoE-LLaVAはMoEベースのスパースLVLMアーキテクチャであり、ルータを通じてトップkの専門家のみをユニークに活性化する。
様々な視覚的理解と物体幻覚のベンチマークにおいて,MoE-LLaVAの顕著な性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-01-29T08:13:40Z) - Distributed Inference and Fine-tuning of Large Language Models Over The
Internet [91.00270820533272]
大規模言語モデル(LLM)は、多くのNLPタスクで有用であり、サイズが向上する。
これらのモデルはハイエンドのハードウェアを必要とするため、ほとんどの研究者にはアクセスできない。
本研究では,システムスループットの最大化のためにデバイスを自動的に割り当てるフォールトトレラント推論アルゴリズムとロードバランシングプロトコルを開発する。
論文 参考訳(メタデータ) (2023-12-13T18:52:49Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - Fine-Tuning Language Models with Just Forward Passes [92.04219196752007]
微調整言語モデル(LM)は、様々な下流タスクで成功したが、LMのサイズが大きくなるにつれて、バックプロパゲーションは大量のメモリを必要とする。
本稿では,メモリ効率の高いゼロソーダ(MeZO)を提案する。
論文 参考訳(メタデータ) (2023-05-27T02:28:10Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Efficiently Scaling Transformer Inference [8.196193683641582]
本稿では,トランスフォーマーモデルにおける効率的な生成推論の問題について,最も困難な設定の1つとして検討する。
我々は,TPU v4スライスに最適化された最適多次元分割手法を選択するための,推論効率の簡易な解析モデルを開発した。
我々は,入力トークンの大規模処理において,発生時に1トークンあたり29msの低バッチレイテンシを実現する(Int8重み量子化)。
論文 参考訳(メタデータ) (2022-11-09T18:50:38Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - Scalable and Efficient MoE Training for Multitask Multilingual Models [55.987536562357086]
我々は,MoEモデルを数兆のパラメータに効率的にスケールできるシステムを開発した。
また,MoEサンプルの効率を向上させるための新たなトレーニング手法を提案し,時間効率を向上させるために専門家の刈り取り戦略を活用する。
50言語で100億のパラメータで訓練されたモデルは、機械翻訳(MT)および多言語自然言語生成タスクにおける最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2021-09-22T00:57:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。