論文の概要: Puzzle: Distillation-Based NAS for Inference-Optimized LLMs
- arxiv url: http://arxiv.org/abs/2411.19146v4
- Date: Thu, 20 Mar 2025 14:50:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 19:00:22.756517
- Title: Puzzle: Distillation-Based NAS for Inference-Optimized LLMs
- Title(参考訳): Puzzle:推論最適化LDMのための蒸留系NAS
- Authors: Akhiad Bercovich, Tomer Ronen, Talor Abramovich, Nir Ailon, Nave Assaf, Mohammad Dabbah, Ido Galil, Amnon Geifman, Yonatan Geifman, Izhak Golan, Netanel Haber, Ehud Karpas, Roi Koren, Itay Levy, Pavlo Molchanov, Shahar Mor, Zach Moshe, Najeeb Nabwani, Omri Puny, Ran Rubin, Itamar Schen, Ido Shahaf, Oren Tropp, Omer Ullman Argov, Ran Zilberstein, Ran El-Yaniv,
- Abstract要約: 大きな言語モデル(LLM)は優れた能力を提供するが、高い推論コストは広く採用を制限する。
本稿では,LLMの推論を高速化するハードウェア対応フレームワークであるPuzzleについて述べる。
Llama-3.1-Nemotron-51B-Instruct (Nemotron-51B) はLlama-3.1-70B-Instructから派生した一般公開モデルである。
- 参考スコア(独自算出の注目度): 17.72841008597783
- License:
- Abstract: Large language models (LLMs) offer remarkable capabilities, yet their high inference costs restrict wider adoption. While increasing parameter counts improves accuracy, it also broadens the gap between state-of-the-art capabilities and practical deployability. We present Puzzle, a hardware-aware framework that accelerates the inference of LLMs while preserving their capabilities. Using neural architecture search (NAS) at a large-scale, Puzzle optimizes models with tens of billions of parameters. Our approach utilizes blockwise local knowledge distillation (BLD) for parallel architecture exploration and employs mixed-integer programming for precise constraint optimization. We showcase our framework's impact via Llama-3.1-Nemotron-51B-Instruct (Nemotron-51B), a publicly available model derived from Llama-3.1-70B-Instruct. Nemotron-51B achieves a 2.17x inference throughput speedup, fitting on a single NVIDIA H100 GPU while retaining 98.4% of the original model's benchmark accuracies. Notably, it is the most accurate model supporting single H100 GPU inference with large batch sizes, despite training on only 45B tokens, far fewer than the 15T used to train Llama-70B. Lastly, we derive Llama-3.3-Nemotron-49B-Super-Base to demonstrate Puzzle can retain long-context and that lightweight alignment on these derived models allows them to surpass the parent model in specific capabilities. Our work establishes that powerful LLM models can be optimized for efficient deployment with only negligible loss in quality, underscoring that inference performance, not parameter count alone, should guide model selection.
- Abstract(参考訳): 大きな言語モデル(LLM)は優れた能力を提供するが、高い推論コストは広く採用を制限する。
パラメータ数を増やすことで精度が向上する一方で、最先端の機能と実際のデプロイ可能性の間のギャップも広がる。
本稿では,LLMの推論を高速化するハードウェア対応フレームワークであるPuzzleについて述べる。
大規模なニューラルネットワークサーチ(NAS)を使用して、Puzzleは、数千億のパラメータを持つモデルを最適化する。
提案手法では,ブロックワイズ局所知識蒸留(BLD)を並列アーキテクチャ探索に利用し,厳密な制約最適化のために混合整数計画を用いる。
Llama-3.1-Nemotron-51B-Instruct (Nemotron-51B) はLlama-3.1-70B-Instructから派生した一般公開モデルである。
Nemotron-51Bは2.17倍のスループットを達成し、1つのNVIDIA H100 GPUに適合し、オリジナルのモデルのベンチマーク精度の98.4%を維持している。
特に、45Bトークンしかトレーニングしていないにもかかわらず、1つのH100 GPU推論をサポートする最も正確なモデルであり、Llama-70Bのトレーニングに使用される15Tよりもはるかに少ない。
最後に、Llama-3.3-Nemotron-49B-Super-Baseを導出し、Puzzleが長いコンテキストを保てることを示した。
我々の研究は、強力なLCMモデルは、パラメータ数だけでなく推論性能がモデル選択を導くべきであることを強調し、品質の低下を無視せずに効率的なデプロイメントに最適化できることを確立した。
関連論文リスト
- Democratizing AI: Open-source Scalable LLM Training on GPU-based Supercomputers [65.35142508909892]
AxoNNと呼ばれる,スケーラブルでポータブルなオープンソースフレームワークで実装された新しい4次元ハイブリッド並列アルゴリズムを提案する。
本稿では,Frontier 上で AxoNN を用いて405ビリオンパラメータ LLM の微調整を行う。
論文 参考訳(メタデータ) (2025-02-12T06:05:52Z) - MOFHEI: Model Optimizing Framework for Fast and Efficient Homomorphically Encrypted Neural Network Inference [0.8388591755871735]
ホモモルフィック暗号化(HE)により、暗号化データ上で機械学習タスクを実行できる。
HEに基づくニューラルネットワーク推論を高速かつ効率的にするためのモデルを最適化するフレームワークであるMOFHEIを提案する。
このフレームワークはLeNet上で最大98%のプルーニング比を実現し,PI実行に必要なHE操作の最大93%を排除した。
論文 参考訳(メタデータ) (2024-12-10T22:44:54Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
ディープラーニングアプリケーションは、数十億のパラメータを持つ大きなモデルを使用することの恩恵を受ける。
これらのモデルのトレーニングは、特殊なHPCクラスタを必要とするため、非常に高価である。
安価な"プリエンプティブル"インスタンスを使用するか、あるいは複数のリージョンから既存のリソースをプールする。
論文 参考訳(メタデータ) (2023-01-27T18:55:19Z) - Efficiently Scaling Transformer Inference [8.196193683641582]
本稿では,トランスフォーマーモデルにおける効率的な生成推論の問題について,最も困難な設定の1つとして検討する。
我々は,TPU v4スライスに最適化された最適多次元分割手法を選択するための,推論効率の簡易な解析モデルを開発した。
我々は,入力トークンの大規模処理において,発生時に1トークンあたり29msの低バッチレイテンシを実現する(Int8重み量子化)。
論文 参考訳(メタデータ) (2022-11-09T18:50:38Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - Scalable and Efficient MoE Training for Multitask Multilingual Models [55.987536562357086]
我々は,MoEモデルを数兆のパラメータに効率的にスケールできるシステムを開発した。
また,MoEサンプルの効率を向上させるための新たなトレーニング手法を提案し,時間効率を向上させるために専門家の刈り取り戦略を活用する。
50言語で100億のパラメータで訓練されたモデルは、機械翻訳(MT)および多言語自然言語生成タスクにおける最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2021-09-22T00:57:46Z) - Real-Time Execution of Large-scale Language Models on Mobile [49.32610509282623]
BERTの最良のモデル構造は,特定のデバイスに適合する計算サイズである。
我々のフレームワークは、モバイルデバイスのリソース仕様とリアルタイム仕様の両方を満たすための特定モデルを保証することができる。
具体的には、当社のモデルはCPUでは5.2倍、GPUでは4.1倍、BERTベースでは0.5-2%の精度損失がある。
論文 参考訳(メタデータ) (2020-09-15T01:59:17Z) - GShard: Scaling Giant Models with Conditional Computation and Automatic
Sharding [46.74457030177477]
自動シャーディングを用いて,Sparsely-Gated Mixture-of-Expertsを用いた多言語ニューラルネットワーク翻訳トランスフォーマーモデルのスケールアップ方法を示す。
我々は,2048 TPU v3アクセラレーターを4日間で効率的に訓練し,100言語から英語への翻訳において,はるかに優れた品質を実現することを実証した。
論文 参考訳(メタデータ) (2020-06-30T10:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。