On the characterization of Schmidt number breaking and annihilating channels
- URL: http://arxiv.org/abs/2411.19315v1
- Date: Thu, 28 Nov 2024 18:41:16 GMT
- Title: On the characterization of Schmidt number breaking and annihilating channels
- Authors: Bivas Mallick, Nirman Ganguly, A. S. Majumdar,
- Abstract summary: Schmidt numbers quantify the entanglement dimension of quantum states.
Some quantum channels can reduce the Schmidt number of states.
We introduce a new class of quantum channels, termed Schmidt number annihilating channels.
- Score: 0.0
- License:
- Abstract: Transmission of high dimensional entanglement through quantum channels is a significant area of interest in quantum information science. The certification of high dimensional entanglement is usually done through Schmidt numbers. Schmidt numbers quantify the entanglement dimension of quantum states. States with high Schmidt numbers provide a larger advantage in various quantum information processing tasks compared to quantum states with low Schmidt numbers. However, some quantum channels can reduce the Schmidt number of states. Here we present a comprehensive analysis of Schmidt number breaking channels which reduce the Schmidt number of bipartite composite systems. From a resource theoretic perspective, it becomes imperative to identify channels that preserve the Schmidt number. Based on our characterization we lay down prescriptions to identify such channels which are non-resource breaking, i.e., preserve the Schmidt number. Additionally, we introduce a new class of quantum channels, termed Schmidt number annihilating channels which reduce the Schmidt number of a quantum state that is a part of a larger composite system. Finally, we study the connection between entanglement breaking, Schmidt number breaking, and Schmidt number annihilating channels.
Related papers
- On properties of Schmidt Decomposition [0.0]
We review properties of bipartite Schmidt decompositions and study which of them extend to multipartite states.
We show that it is NP-complete to partition a multipartite state that attains the highest Schmidt number.
arXiv Detail & Related papers (2024-11-08T17:03:22Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Families of Schmidt-number witnesses for high dimensional quantum states [0.9790236766474201]
Schmidt number is a quantity on the dimension entanglement of a bipartite state.
We show the distance between a bipartite state and the set of states with Schmidt number less than k.
arXiv Detail & Related papers (2024-03-01T03:25:53Z) - High Schmidt number concentration in quantum bound entangled states [0.135975510645475]
We introduce efficient analytical tools for calculating the Schmidt number for a class of bipartite states.
We construct a Schmidt number three PPT state in five dimensional systems and a family of states with a Schmidt number of $(d+1)/2$ for odd $d$-dimensional systems.
arXiv Detail & Related papers (2024-02-20T12:33:57Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Tensor Network Efficiently Representing Schmidt Decomposition of Quantum
Many-Body States [6.941759751222217]
Schmidt network state (Schmidt TNS) efficiently represents the Schmidt decomposition of finite- and even infinite-size quantum states.
We show that the MPS encoding the Schmidt coefficients is weakly entangled even when the entanglement entropy of the state is strong.
This justifies the efficiency of using MPS to encode the Schmidt coefficients, and promises an exponential speedup on the full-state sampling tasks.
arXiv Detail & Related papers (2022-10-15T02:34:43Z) - Construction of efficient Schmidt number witnesses for high-dimensional
quantum states [0.0]
We develop an iterative algorithm that finds Schmidt number witnesses tailored to the measurements available in specific experimental setups.
We then apply the algorithm to find a witness that requires the measurement of a number of density matrix elements that scales linearly with the local dimension of the system.
arXiv Detail & Related papers (2022-10-11T09:12:38Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum Channel State Masking [78.7611537027573]
Communication over a quantum channel that depends on a quantum state is considered when the encoder has channel side information (CSI) and is required to mask information on the quantum channel state from the decoder.
A full characterization is established for the entanglement-assisted masking equivocation region, and a regularized formula is given for the quantum capacity-leakage function without assistance.
arXiv Detail & Related papers (2020-06-10T16:18:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.