Characterizing High Schmidt Number Witnesses in Arbitrary Dimensions System
- URL: http://arxiv.org/abs/2504.11213v1
- Date: Tue, 15 Apr 2025 14:15:16 GMT
- Title: Characterizing High Schmidt Number Witnesses in Arbitrary Dimensions System
- Authors: Liang Xiong, Nung-sing Sze,
- Abstract summary: We develop an efficient tool for characterizing high Schmidt number witnesses for bipartite quantum states in arbitrary dimensions.<n>Our methods offer viable mathematical methods for constructing high-dimensional Schmidt number witnesses in theory.<n>We demonstrate our theoretical advancements and computational superiority by constructing Schmidt number witnesses in arbitrary dimensional bipartite quantum systems with Schmidt numbers four and five.
- Score: 0.7366405857677227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A profound comprehension of quantum entanglement is crucial for the progression of quantum technologies. The degree of entanglement can be assessed by enumerating the entangled degrees of freedom, leading to the determination of a parameter known as the Schmidt number. In this paper, we develop an efficient analytical tool for characterizing high Schmidt number witnesses for bipartite quantum states in arbitrary dimensions. Our methods not only offer viable mathematical methods for constructing high-dimensional Schmidt number witnesses in theory but also simplify the quantification of entanglement and dimensionality. Most notably, we develop high-dimensional Schmidt number witnesses within arbitrary-dimensional systems, with our Schmidt witness coefficients relying solely on the operator Schmidt coefficient. Subsequently, we demonstrate our theoretical advancements and computational superiority by constructing Schmidt number witnesses in arbitrary dimensional bipartite quantum systems with Schmidt numbers four and five.
Related papers
- Quantum Lifting for Invertible Permutations and Ideal Ciphers [47.33103206862089]
We derive the first lifting theorems for establishing security in the quantum random permutation and ideal cipher models.
These theorems relate the success probability of an arbitrary quantum adversary to that of a classical algorithm making only a small number of classical queries.
arXiv Detail & Related papers (2025-04-25T09:07:55Z) - Probing quantum many-body dynamics using subsystem Loschmidt echos [39.34101719951107]
We experimentally investigate the subsystem Loschmidt echo, a quasi-local observable that captures key features of the Loschmidt echo.<n>In the short-time regime, we observe a dynamical quantum phase transition arising from genuine higher-order correlations.<n>In the long-time regime, the subsystem Loschmidt echo allows us to quantitatively determine the effective dimension and structure of the accessible Hilbert space in the thermodynamic limit.
arXiv Detail & Related papers (2025-01-28T14:51:37Z) - On the characterization of Schmidt number breaking and annihilating channels [0.0]
Schmidt numbers quantify the entanglement dimension of quantum states.<n>Some quantum channels can reduce the Schmidt number of states.<n>We introduce a new class of quantum channels, termed Schmidt number annihilating channels.
arXiv Detail & Related papers (2024-11-28T18:41:16Z) - Families of Schmidt-number witnesses for high dimensional quantum states [0.9790236766474201]
Schmidt number is a quantity on the dimension entanglement of a bipartite state.
We show the distance between a bipartite state and the set of states with Schmidt number less than k.
arXiv Detail & Related papers (2024-03-01T03:25:53Z) - High Schmidt number concentration in quantum bound entangled states [0.135975510645475]
We introduce efficient analytical tools for calculating the Schmidt number for a class of bipartite states.
We construct a Schmidt number three PPT state in five dimensional systems and a family of states with a Schmidt number of $(d+1)/2$ for odd $d$-dimensional systems.
arXiv Detail & Related papers (2024-02-20T12:33:57Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Construction of efficient Schmidt number witnesses for high-dimensional
quantum states [0.0]
We develop an iterative algorithm that finds Schmidt number witnesses tailored to the measurements available in specific experimental setups.
We then apply the algorithm to find a witness that requires the measurement of a number of density matrix elements that scales linearly with the local dimension of the system.
arXiv Detail & Related papers (2022-10-11T09:12:38Z) - Sensitivity of entanglement measures in bipartite pure quantum states [0.0]
Entanglement measures quantify the amount of quantum entanglement that is contained in quantum states.
We have investigated the partial order between the normalized versions of four entanglement measures based on Schmidt decomposition of bipartite pure quantum states.
arXiv Detail & Related papers (2022-06-27T10:46:29Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - On the properties of the asymptotic incompatibility measure in
multiparameter quantum estimation [62.997667081978825]
Incompatibility (AI) is a measure which quantifies the difference between the Holevo and the SLD scalar bounds.
We show that the maximum amount of AI is attainable only for quantum statistical models characterized by a purity larger than $mu_sf min = 1/(d-1)$.
arXiv Detail & Related papers (2021-07-28T15:16:37Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Programmable quantum simulation of 2D antiferromagnets with hundreds of
Rydberg atoms [43.55994393060723]
Quantum simulation using synthetic systems is a promising route to solve outstanding quantum many-body problems.
Here, we use programmable arrays of individual atoms trapped in optical tweezers to implement an iconic many-body problem.
We push this platform to an unprecedented regime with up to 196 atoms manipulated with high fidelity.
arXiv Detail & Related papers (2020-12-22T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.