論文の概要: Understanding the Design Decisions of Retrieval-Augmented Generation Systems
- arxiv url: http://arxiv.org/abs/2411.19463v2
- Date: Mon, 21 Jul 2025 08:38:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 18:47:38.80116
- Title: Understanding the Design Decisions of Retrieval-Augmented Generation Systems
- Title(参考訳): 検索型生成システムの設計決定の理解
- Authors: Shengming Zhao, Yuchen Shao, Yuheng Huang, Jiayang Song, Zhijie Wang, Chengcheng Wan, Lei Ma,
- Abstract要約: Retrieval-Augmented Generation (RAG) は、大規模言語モデル(LLM)能力を向上するための重要な技術として登場した。
本稿では,3つの共通RAG展開決定に関する総合的研究について紹介する。
- 参考スコア(独自算出の注目度): 7.10184268156888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) has emerged as a critical technique for enhancing large language model (LLM) capabilities. However, practitioners face significant challenges when making RAG deployment decisions. While existing research prioritizes algorithmic innovations, a systematic gap persists in understanding fundamental engineering trade-offs that determine RAG success. We present the first comprehensive study of three universal RAG deployment decisions: whether to deploy RAG, how much information to retrieve, and how to integrate retrieved knowledge effectively. Through systematic experiments across three LLMs and six datasets spanning question answering and code generation tasks, we reveal critical insights: (1) RAG deployment must be highly selective, with variable recall thresholds and failure modes affecting up to 12.6\% of samples even with perfect documents. (2) Optimal retrieval volume exhibits task-dependent behavior QA tasks show universal patterns (5-10 documents optimal) while code generation requires scenario-specific optimization. (3) Knowledge integration effectiveness depends on task and model characteristics, with code generation benefiting significantly from prompting methods while question answering shows minimal improvement. These findings demonstrate that universal RAG strategies prove inadequate. Effective RAG systems require context-aware design decisions based on task characteristics and model capabilities. Our analysis provides evidence-based guidance for practitioners and establishes foundational insights for principled RAG deployment.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、大規模言語モデル(LLM)能力を向上するための重要な技術として登場した。
しかしながら、実践者は、RAGデプロイメントの決定を行う場合、重大な課題に直面します。
既存の研究はアルゴリズムのイノベーションを優先しているが、系統的なギャップはRAGの成功を決定する基本的なエンジニアリングトレードオフを理解することにある。
本稿では,3つの共通RAG展開決定に関する総合的研究として,RAGの展開の可否,検索する情報量,検索した知識を効果的に統合する方法について紹介する。
質問応答とコード生成タスクにまたがる3つのLSMと6つのデータセットの体系的な実験を通じて、重要な洞察を明らかにした。 1) RAGデプロイメントは、可変リコールしきい値と障害モードが、完全なドキュメントであっても最大12.6%のサンプルに影響を与える、高度に選択的でなければならない。
2) 最適検索ボリュームはタスク依存行動を示すQAタスクは普遍的なパターンを示す(5-10文書は最適)が,コード生成にはシナリオ固有の最適化が必要である。
3) 知識統合の有効性はタスクとモデルの特徴に左右され,コード生成はメソッドのプロンプトから大きく恩恵を受け,質問応答は最小限の改善を示す。
これらの結果から,普遍的なRAG戦略が不十分であることが示唆された。
効果的なRAGシステムは、タスクの特性とモデル機能に基づいたコンテキスト対応の設計決定を必要とする。
我々の分析は,実践者に対するエビデンスに基づくガイダンスを提供し,原則的RAG展開の基礎的洞察を確立する。
関連論文リスト
- A Systematic Review of Key Retrieval-Augmented Generation (RAG) Systems: Progress, Gaps, and Future Directions [1.4931265249949528]
Retrieval-Augmented Generation (RAG)は自然言語処理(NLP)における大きな進歩である
RAGは、大規模言語モデル(LLM)と情報検索システムを組み合わせて、事実的根拠付け、正確性、文脈的関連性を高める。
本稿ではRAGの体系的なレビューを行い、最近の最先端実装に対するオープンドメイン質問の早期展開から進化を辿る。
論文 参考訳(メタデータ) (2025-07-25T03:05:46Z) - Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) は、外部知識を注入することによって、Large Language Models (LLM) の事実性を高める。
逆に、純粋に推論指向のアプローチは、しばしば幻覚的あるいは誤った事実を必要とする。
この調査は両鎖を統一的推論-検索の観点から合成する。
論文 参考訳(メタデータ) (2025-07-13T03:29:41Z) - HIRAG: Hierarchical-Thought Instruction-Tuning Retrieval-Augmented Generation [9.175609521889266]
我々は、新しいRAG命令微調整手法、階層型命令-調整型検索生成(HIRAG)を導入する。
この方法は,多段階のプログレッシブ・チェーン・オブ・シントを利用して,モデルのオープンブック検査能力を向上させる。
実験によると、HIRAGトレーニング戦略は、RGB、PopQA、MuSiQue、HotpotQA、PubmedQAといったデータセット上でのモデルのパフォーマンスを大幅に改善する。
論文 参考訳(メタデータ) (2025-07-08T06:53:28Z) - KARE-RAG: Knowledge-Aware Refinement and Enhancement for RAG [63.82127103851471]
Retrieval-Augmented Generation (RAG)は、大規模言語モデルがより広範な知識ソースにアクセスすることを可能にする。
ノイズの多いコンテンツを処理するために生成モデルの能力を向上させることは、ロバストなパフォーマンスに等しく重要であることを実証する。
本稿では,3つの重要なイノベーションを通じて知識利用を改善するKARE-RAGを提案する。
論文 参考訳(メタデータ) (2025-06-03T06:31:17Z) - Reinforced Informativeness Optimization for Long-Form Retrieval-Augmented Generation [77.10390725623125]
LFQA(Long-form Question answering)は、大規模言語モデルに固有の課題を提示する。
RioRAGは、強化情報性最適化を通じて長めのRAGを進化させる新しい強化学習フレームワークである。
論文 参考訳(メタデータ) (2025-05-27T07:34:41Z) - Process vs. Outcome Reward: Which is Better for Agentic RAG Reinforcement Learning [45.10424242207931]
Retrieval-augmented Generation (RAG)は大規模言語モデル(LLM)のテキスト生成能力を向上する
RAG-ProGuideは,クエリ生成,エビデンス抽出,回答生成のためのプロセスレベルの報酬を提供する高品質なデータセットである。
プロセスレベルのポリシー最適化により、提案フレームワークはLLMに対して、検索を自律的に実行し、クエリを生成し、関連する証拠を抽出し、最終的な回答を生成する権限を与える。
論文 参考訳(メタデータ) (2025-05-20T08:21:00Z) - RAGO: Systematic Performance Optimization for Retrieval-Augmented Generation Serving [9.962031642362813]
Retrieval-augmented Generation (RAG) は、信頼性LLMサービスに対する一般的なアプローチとして現れつつある。
RAGは、幅広いRAGアルゴリズムをキャプチャする構造化された抽象化である。
RAGOは、効率的なRAGサービスのためのシステム最適化フレームワークである。
論文 参考訳(メタデータ) (2025-03-18T18:58:13Z) - MES-RAG: Bringing Multi-modal, Entity-Storage, and Secure Enhancements to RAG [65.0423152595537]
本稿では,エンティティ固有のクエリ処理を強化し,正確でセキュアで一貫した応答を提供するMES-RAGを提案する。
MES-RAGは、データアクセスの前に保護を適用してシステムの整合性を確保するための積極的なセキュリティ対策を導入している。
実験の結果,MES-RAGは精度とリコールの両方を著しく改善し,質問応答の安全性と有用性を向上する効果が示された。
論文 参考訳(メタデータ) (2025-03-17T08:09:42Z) - HawkBench: Investigating Resilience of RAG Methods on Stratified Information-Seeking Tasks [50.871243190126826]
HawkBenchは、RAGのパフォーマンスを厳格に評価するために設計された、人間ラベル付きマルチドメインベンチマークである。
情報探索行動に基づくタスクの階層化により、HawkBenchはRAGシステムが多様なユーザニーズにどのように適応するかを体系的に評価する。
論文 参考訳(メタデータ) (2025-02-19T06:33:39Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG)は、AIGC(AIGC)の課題に対処するために設計された高度な技術である。
RAGは信頼性と最新の外部知識を提供し、幻覚を減らし、幅広いタスクで関連するコンテキストを保証する。
RAGの成功と可能性にもかかわらず、最近の研究により、RAGパラダイムはプライバシーの懸念、敵対的攻撃、説明責任の問題など、新たなリスクももたらしていることが示されている。
論文 参考訳(メタデータ) (2025-02-08T06:50:47Z) - Enhancing Retrieval-Augmented Generation: A Study of Best Practices [16.246719783032436]
我々は,クエリ拡張,新しい検索戦略,新しいコントラシティブ・インコンテクスト学習RAGを取り入れた高度なRAGシステム設計を開発する。
本研究は,言語モデルのサイズ,プロンプトデザイン,文書チャンクサイズ,知識ベースサイズ,検索ストライド,クエリ拡張手法,文レベルでのコンテキスト検索など,重要な要素を体系的に検討する。
本研究は,RAGシステムの開発に有効な知見を提供し,文脈的豊かさと検索・生成効率のバランスを図った。
論文 参考訳(メタデータ) (2025-01-13T15:07:55Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - Towards Knowledge Checking in Retrieval-augmented Generation: A Representation Perspective [48.40768048080928]
Retrieval-Augmented Generation (RAG) システムは,Large Language Models (LLM) の性能向上を約束している。
本研究の目的は,RAGシステムにおける知識チェックに関する体系的研究を提供することである。
論文 参考訳(メタデータ) (2024-11-21T20:39:13Z) - Unveiling and Consulting Core Experts in Retrieval-Augmented MoE-based LLMs [64.9693406713216]
RAGシステムの有効性に寄与する内部メカニズムは未解明のままである。
実験の結果,複数のコアグループの専門家がRAG関連行動に主に関与していることが判明した。
本稿では,専門家の活性化を通じてRAGの効率性と有効性を高めるためのいくつかの戦略を提案する。
論文 参考訳(メタデータ) (2024-10-20T16:08:54Z) - A Methodology for Evaluating RAG Systems: A Case Study On Configuration Dependency Validation [6.544757635738911]
Retrieval-augmented Generation(RAG)は、異なるコンポーネント、設計決定、ドメイン固有の適応の傘である。
現在、RAG評価の方法論は一般に受け入れられていないが、この技術への関心は高まりつつある。
本稿では,RAGシステムの健全かつ信頼性の高い評価手法の最初の青写真を提案する。
論文 参考訳(メタデータ) (2024-10-11T13:36:13Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - VERA: Validation and Evaluation of Retrieval-Augmented Systems [5.709401805125129]
VERAは、大規模言語モデル(LLM)からの出力の透明性と信頼性を高めるために設計されたフレームワークである。
VERAが意思決定プロセスを強化し、AIアプリケーションへの信頼を高める方法を示す。
論文 参考訳(メタデータ) (2024-08-16T21:59:59Z) - RAG Foundry: A Framework for Enhancing LLMs for Retrieval Augmented Generation [8.377398103067508]
我々は、RAGのユースケースのための大規模言語モデルを拡張するためのオープンソースのフレームワークであるRAG Foundryを紹介します。
RAG Foundryはデータ生成、トレーニング、推論、評価を単一のワークフローに統合する。
多様なRAG構成を持つLlama-3およびPhi-3モデルを拡張し,微調整することで,フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2024-08-05T15:16:24Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender system (RS) は、埋め込みベクトルによって符号化される分類的特徴に依存し、結果として非常に大きな埋め込みテーブルとなる。
軽量埋め込み型RSの繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られる。
本研究では, LERSの性能, 効率, クロスタスク転送性について, 徹底的なベンチマークによる検討を行った。
論文 参考訳(メタデータ) (2024-06-25T07:45:00Z) - Retrieval-Augmented Generation for AI-Generated Content: A Survey [38.50754568320154]
このような課題に対処するためのパラダイムとして,レトリーバル拡張生成(RAG)が登場している。
RAGは情報検索プロセスを導入し、利用可能なデータストアから関連オブジェクトを検索することで生成プロセスを強化する。
本稿では,RAG手法をAIGCシナリオに統合する既存の取り組みを概観的にレビューする。
論文 参考訳(メタデータ) (2024-02-29T18:59:01Z) - Retrieval-Augmented Generation for Large Language Models: A Survey [17.82361213043507]
大きな言語モデル(LLM)には印象的な能力があるが、幻覚のような課題に直面している。
Retrieval-Augmented Generation (RAG) は,外部データベースからの知識を取り入れた,有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-18T07:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。