論文の概要: Materials Learning Algorithms (MALA): Scalable Machine Learning for Electronic Structure Calculations in Large-Scale Atomistic Simulations
- arxiv url: http://arxiv.org/abs/2411.19617v1
- Date: Fri, 29 Nov 2024 11:10:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:18:39.806454
- Title: Materials Learning Algorithms (MALA): Scalable Machine Learning for Electronic Structure Calculations in Large-Scale Atomistic Simulations
- Title(参考訳): 材料学習アルゴリズム(MALA):大規模原子論シミュレーションにおける電子構造計算のためのスケーラブル機械学習
- Authors: Attila Cangi, Lenz Fiedler, Bartosz Brzoza, Karan Shah, Timothy J. Callow, Daniel Kotik, Steve Schmerler, Matthew C. Barry, James M. Goff, Andrew Rohskopf, Dayton J. Vogel, Normand Modine, Aidan P. Thompson, Sivasankaran Rajamanickam,
- Abstract要約: 本稿では,大規模原子論シミュレーションに適したスケーラブルな機械学習フレームワークであるMaterial Learning Algorithms (MALA)パッケージを提案する。
MALAモデルは、状態の局所密度、電子密度、状態の密度、総エネルギーを含む重要な電子観測物を効率的に予測する。
我々は, ホウ素クラスター, 固液相境界を横切るアルミニウム, 大型ベリリウムスラブの積層断層の電子構造を予測した例でMALAの機能を示す。
- 参考スコア(独自算出の注目度): 2.04071520659173
- License:
- Abstract: We present the Materials Learning Algorithms (MALA) package, a scalable machine learning framework designed to accelerate density functional theory (DFT) calculations suitable for large-scale atomistic simulations. Using local descriptors of the atomic environment, MALA models efficiently predict key electronic observables, including local density of states, electronic density, density of states, and total energy. The package integrates data sampling, model training and scalable inference into a unified library, while ensuring compatibility with standard DFT and molecular dynamics codes. We demonstrate MALA's capabilities with examples including boron clusters, aluminum across its solid-liquid phase boundary, and predicting the electronic structure of a stacking fault in a large beryllium slab. Scaling analyses reveal MALA's computational efficiency and identify bottlenecks for future optimization. With its ability to model electronic structures at scales far beyond standard DFT, MALA is well suited for modeling complex material systems, making it a versatile tool for advanced materials research.
- Abstract(参考訳): 本稿では,大規模原子論シミュレーションに適した密度汎関数理論(DFT)計算を高速化するスケーラブルな機械学習フレームワークであるMaterial Learning Algorithms (MALA)パッケージを提案する。
原子環境の局所的な記述子を用いて、MALAモデルは、局所的な状態密度、電子密度、状態密度、総エネルギーを含む重要な電子可観測物質を効率的に予測する。
このパッケージはデータサンプリング、モデルトレーニング、拡張性推論を統一ライブラリに統合し、標準のDFTおよび分子動力学コードとの互換性を確保する。
我々は, ホウ素クラスター, 固液相境界を横切るアルミニウム, 大型ベリリウムスラブの積層断層の電子構造を予測した例でMALAの機能を示す。
スケーリング分析はMALAの計算効率を明らかにし、将来の最適化のためのボトルネックを特定する。
標準的なDFTをはるかに超えたスケールで電子構造をモデル化できるため、MALAは複雑な物質系のモデリングに適しており、先進的な材料研究のための汎用的なツールとなっている。
関連論文リスト
- Model-free quantification of completeness, uncertainties, and outliers in atomistic machine learning using information theory [4.59916193837551]
原子論的機械学習(ML)は、情報内容を分析するために教師なし学習やモデル予測に依存していることが多い。
本稿では、原子論シミュレーションにおける情報内容の定量化のための厳密なモデルフリーツールを提供する理論的枠組みを提案する。
論文 参考訳(メタデータ) (2024-04-18T17:50:15Z) - Quantum-informed simulations for mechanics of materials: DFTB+MBD framework [40.83978401377059]
本研究では, 材料工学に関連するシステムの力学特性を量子効果によってどのように変化させるかを検討する。
この作業で提示されたすべてのコード、データセット、サンプルを含むオープンソースリポジトリを提供する。
論文 参考訳(メタデータ) (2024-04-05T16:59:01Z) - Fine-Tuned Language Models Generate Stable Inorganic Materials as Text [57.01994216693825]
テキストエンコードされた原子構造データに基づく微調整された大規模言語モデルは、実装が簡単で信頼性が高い。
我々の最強モデルは、CDVAEの約2倍の速度で準安定であると予測された物質を生成することができる。
テキストプロンプト固有の柔軟性のため、我々のモデルは安定物質を無条件に生成するために同時に使用することができる。
論文 参考訳(メタデータ) (2024-02-06T20:35:28Z) - Electronic excited states from physically-constrained machine learning [0.0]
本稿では,実効ハミルトニアンの対称性適応MLモデルをトレーニングし,量子力学計算から電子励起を再現する統合モデリング手法を提案する。
結果として得られるモデルは、トレーニングされた分子よりもずっと大きく、より複雑な分子を予測できる。
論文 参考訳(メタデータ) (2023-11-01T20:49:59Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Electronic Structure Prediction of Multi-million Atom Systems Through Uncertainty Quantification Enabled Transfer Learning [5.4875371069660925]
基底状態電子密度 -- コーン・シャム密度汎関数理論(KS-DFT)シミュレーションで得られる -- は、豊富な物質情報を含んでいる。
しかし、KS-DFTの計算コストは、トレーニングデータ生成を妨害する傾向にあるシステムサイズと3倍にスケールする。
ここでは,この基本的課題に,移動学習を用いて学習データのマルチスケールな性質を活用する。
論文 参考訳(メタデータ) (2023-08-24T21:41:29Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Towards High Performance Relativistic Electronic Structure Modelling:
The EXP-T Program Package [68.8204255655161]
並列計算機用に設計されたFS-RCC方式の新たな実装を提案する。
実装のパフォーマンスとスケーリングの特徴を分析した。
開発されたソフトウェアは、重い超重核を含む原子や分子の性質を予測するための全く新しいレベルの精度を達成することができる。
論文 参考訳(メタデータ) (2020-04-07T20:08:30Z) - Automated discovery of a robust interatomic potential for aluminum [4.6028828826414925]
機械学習(ML)ベースのポテンシャルは、量子力学(QM)計算の忠実なエミュレーションを、計算コストを大幅に削減することを目的としている。
アクティブラーニング(AL)の原理を用いたデータセット構築のための高度に自動化されたアプローチを提案する。
アルミニウム(ANI-Al)のMLポテンシャル構築によるこのアプローチの実証
転写性を示すために、1.3M原子衝撃シミュレーションを行い、非平衡力学から採取した局所原子環境上でのDFT計算とANI-Al予測がよく一致することを示す。
論文 参考訳(メタデータ) (2020-03-10T19:06:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。