論文の概要: SIMS: Simulating Human-Scene Interactions with Real World Script Planning
- arxiv url: http://arxiv.org/abs/2411.19921v1
- Date: Fri, 29 Nov 2024 18:36:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:23:18.735102
- Title: SIMS: Simulating Human-Scene Interactions with Real World Script Planning
- Title(参考訳): SIMS:実世界のスクリプトプランニングによるヒューマン・シーンインタラクションのシミュレーション
- Authors: Wenjia Wang, Liang Pan, Zhiyang Dou, Zhouyingcheng Liao, Yuke Lou, Lei Yang, Jingbo Wang, Taku Komura,
- Abstract要約: 本稿では,長期的物理的プラプティブルなヒューマン・シーンインタラクションの計画と制御のための新しい枠組みを提案する。
大規模言語モデル(LLM)は論理的なストーリーラインを理解し、生成することができる。
これを活用することで、言語理解とシーン理解の両方を実現する二重認識ポリシーを利用する。
- 参考スコア(独自算出の注目度): 33.31213669502036
- License:
- Abstract: Simulating long-term human-scene interaction is a challenging yet fascinating task. Previous works have not effectively addressed the generation of long-term human scene interactions with detailed narratives for physics-based animation. This paper introduces a novel framework for the planning and controlling of long-horizon physical plausible human-scene interaction. On the one hand, films and shows with stylish human locomotions or interactions with scenes are abundantly available on the internet, providing a rich source of data for script planning. On the other hand, Large Language Models (LLMs) can understand and generate logical storylines. This motivates us to marry the two by using an LLM-based pipeline to extract scripts from videos, and then employ LLMs to imitate and create new scripts, capturing complex, time-series human behaviors and interactions with environments. By leveraging this, we utilize a dual-aware policy that achieves both language comprehension and scene understanding to guide character motions within contextual and spatial constraints. To facilitate training and evaluation, we contribute a comprehensive planning dataset containing diverse motion sequences extracted from real-world videos and expand them with large language models. We also collect and re-annotate motion clips from existing kinematic datasets to enable our policy learn diverse skills. Extensive experiments demonstrate the effectiveness of our framework in versatile task execution and its generalization ability to various scenarios, showing remarkably enhanced performance compared with existing methods. Our code and data will be publicly available soon.
- Abstract(参考訳): 長期的な人間とシーンの対話をシミュレーションすることは、難しいが魅力的な仕事だ。
それまでの作品は、物理学に基づくアニメーションのための詳細な物語と長期的な人間のシーンインタラクションの生成に効果的に対処していない。
本稿では,長期的物理的プラプティブルなヒューマン・シーンインタラクションの計画と制御のための新しい枠組みを提案する。
一方で、スタイリッシュな人間の動きやシーンとのインタラクションを持つ映画やショーはインターネット上でも多数利用でき、スクリプトプランニングのための豊富なデータソースを提供する。
一方、LLM(Large Language Models)は論理的なストーリーラインを理解し、生成することができる。
これにより、LLMベースのパイプラインを使用してビデオからスクリプトを抽出し、LLMを使用して新しいスクリプトを模倣して作成し、複雑な時系列の人間行動と環境とのインタラクションをキャプチャする。
これを活用することで、言語理解とシーン理解の両立を実現し、文脈的制約や空間的制約の中で文字の動きを誘導するデュアルアウェアポリシーを利用する。
トレーニングと評価を容易にするために,実世界の動画から抽出した多様な動き系列を含む包括的計画データセットを作成し,それを大規模言語モデルで拡張する。
また、既存のキネマティックデータセットからモーションクリップを収集、再注釈し、ポリシーが多様なスキルを学習できるようにする。
汎用タスク実行における我々のフレームワークの有効性と,その様々なシナリオへの一般化能力の実証実験を行い,既存手法と比較して性能が著しく向上したことを示した。
コードとデータはまもなく公開されます。
関連論文リスト
- HYPERmotion: Learning Hybrid Behavior Planning for Autonomous Loco-manipulation [7.01404330241523]
HYPERmotionは、異なるシナリオのタスクに基づいて行動を学び、選択し、計画するフレームワークである。
強化学習と全身最適化を組み合わせることで,38関節の運動を生成する。
シミュレーションと実世界の実験では、学習した動きが新しいタスクに効率的に適応できることが示されている。
論文 参考訳(メタデータ) (2024-06-20T18:21:24Z) - Towards Multi-Task Multi-Modal Models: A Video Generative Perspective [5.495245220300184]
この論文は、さまざまな条件下でビデオやその他のモダリティを生成するマルチタスクモデルを構築するために、我々の努力を年代記している。
我々は、視覚的観察と解釈可能な語彙の双方向マッピングのための新しいアプローチを公表する。
私たちのスケーラブルなビジュアルトークン表現は、生成、圧縮、理解タスクで有益であることが証明されます。
論文 参考訳(メタデータ) (2024-05-26T23:56:45Z) - Generating Human Interaction Motions in Scenes with Text Control [66.74298145999909]
本稿では,デノナイズ拡散モデルに基づくテキスト制御されたシーン認識動作生成手法TeSMoを提案する。
我々のアプローチは、シーンに依存しないテキスト-モーション拡散モデルの事前学習から始まります。
トレーニングを容易にするため,シーン内に注釈付きナビゲーションと対話動作を組み込む。
論文 参考訳(メタデータ) (2024-04-16T16:04:38Z) - DoraemonGPT: Toward Understanding Dynamic Scenes with Large Language Models (Exemplified as A Video Agent) [73.10899129264375]
本稿では,LLMによる動的シーン理解のための包括的かつ概念的にエレガントなシステムであるドラモンGPTについて検討する。
質問/タスクのあるビデオが与えられた場合、DoraemonGPTは入力されたビデオをタスク関連の属性を格納するシンボリックメモリに変換することから始める。
我々は,DoraemonGPTの有効性を,3つのベンチマークといくつかのアプリ内シナリオで広範囲に評価した。
論文 参考訳(メタデータ) (2024-01-16T14:33:09Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoMは、Large Language Models (LLM)を活用して、軽量なビジュアルツールを使用して動画を推論する高速適応フレームワークである。
InsOVERアルゴリズムは、言語命令の分解とビデオイベントの間の効率的なハンガリー語マッチングに基づいて、対応するビデオイベントを特定する。
論文 参考訳(メタデータ) (2023-10-16T17:05:56Z) - VoxPoser: Composable 3D Value Maps for Robotic Manipulation with
Language Models [38.503337052122234]
大規模言語モデル(LLM)は、ロボット操作のために抽出できる豊富な行動可能な知識を持っていることが示されている。
我々は,オープンな命令セットとオープンなオブジェクトセットが与えられた様々な操作タスクに対して,ロボット軌道を合成することを目指している。
筆者らは,接触に富んだインタラクションを含むシーンのダイナミックスモデルを効率的に学習することで,提案フレームワークがオンライン体験の恩恵を享受できることを実証する。
論文 参考訳(メタデータ) (2023-07-12T07:40:48Z) - A Video Is Worth 4096 Tokens: Verbalize Videos To Understand Them In
Zero Shot [67.00455874279383]
そこで本研究では,自然言語による記述を生成するために長編動画を音声化し,生成したストーリーの映像理解タスクを実行することを提案する。
提案手法は,ゼロショットであるにもかかわらず,ビデオ理解のための教師付きベースラインよりもはるかに優れた結果が得られる。
ストーリー理解ベンチマークの欠如を緩和するため,我々は,説得戦略の識別に関する計算社会科学における重要な課題に関する最初のデータセットを公開している。
論文 参考訳(メタデータ) (2023-05-16T19:13:11Z) - Synthesizing Physical Character-Scene Interactions [64.26035523518846]
仮想キャラクタとその周辺環境間のこのような相互作用を合成する必要がある。
本稿では,逆模倣学習と強化学習を用いて物理シミュレーション文字を学習するシステムを提案する。
我々のアプローチは、物理学に基づくキャラクターモーション生成を広い適用性に一歩近づいた。
論文 参考訳(メタデータ) (2023-02-02T05:21:32Z) - Learning Action-Effect Dynamics from Pairs of Scene-graphs [50.72283841720014]
本稿では,画像のシーングラフ表現を利用して,自然言語で記述された行動の効果を推論する手法を提案する。
提案手法は,既存のモデルと比較して,性能,データ効率,一般化能力の点で有効である。
論文 参考訳(メタデータ) (2022-12-07T03:36:37Z) - iGibson, a Simulation Environment for Interactive Tasks in Large
Realistic Scenes [54.04456391489063]
iGibsonは、大規模な現実的なシーンにおける対話的なタスクのためのロボットソリューションを開発するための、新しいシミュレーション環境である。
私たちの環境には、厳密で明瞭な物体が密集した15のインタラクティブなホームサイズシーンが含まれています。
iGibsonの機能はナビゲーションエージェントの一般化を可能にし、人間-iGibsonインターフェースと統合されたモーションプランナーは、単純な人間の実演行動の効率的な模倣学習を促進する。
論文 参考訳(メタデータ) (2020-12-05T02:14:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。