論文の概要: Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections
- arxiv url: http://arxiv.org/abs/2412.00162v1
- Date: Fri, 29 Nov 2024 11:57:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:41:00.145381
- Title: Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections
- Title(参考訳): 信号自由区間における安全臨界軌道計画のためのディフューザ付き動的高次制御バリア関数
- Authors: Di Chen, Ruiguo Zhong, Kehua Chen, Zhiwei Shang, Meixin Zhu, Edward Chung,
- Abstract要約: 本研究では,動的高次制御バリア関数(DHOCBF)と拡散モデル(DSC-Diffuser)を統合する安全クリティカルプランニング手法を提案する。
提案手法は目標指向のタスク誘導拡散モデルを導入し,実世界のデータから複数のタスクを同時に学習することを可能にする。
- 参考スコア(独自算出の注目度): 9.041849642602626
- License:
- Abstract: Planning safe and efficient trajectories through signal-free intersections presents significant challenges for autonomous vehicles (AVs), particularly in dynamic, multi-task environments with unpredictable interactions and an increased possibility of conflicts. This study aims to address these challenges by developing a robust, adaptive framework to ensure safety in such complex scenarios. Existing approaches often struggle to provide reliable safety mechanisms in dynamic and learn multi-task behaviors from demonstrations in signal-free intersections. This study proposes a safety-critical planning method that integrates Dynamic High-Order Control Barrier Functions (DHOCBF) with a diffusion-based model, called Dynamic Safety-Critical Diffuser (DSC-Diffuser), offering a robust solution for adaptive, safe, and multi-task driving in signal-free intersections. Our approach incorporates a goal-oriented, task-guided diffusion model, enabling the model to learn multiple driving tasks simultaneously from real-world data. To further ensure driving safety in dynamic environments, the proposed DHOCBF framework dynamically adjusts to account for the movements of surrounding vehicles, offering enhanced adaptability compared to traditional control barrier functions. Validity evaluations of DHOCBF, conducted through numerical simulations, demonstrate its robustness in adapting to variations in obstacle velocities, sizes, uncertainties, and locations, effectively maintaining driving safety across a wide range of complex and uncertain scenarios. Performance evaluations across various scenes confirm that DSC-Diffuser provides realistic, stable, and generalizable policies, equipping it with the flexibility to adapt to diverse driving tasks.
- Abstract(参考訳): 信号のない交差点を通る安全かつ効率的な軌道を計画することは、特に予測不可能な相互作用と衝突の可能性の増大を伴う動的マルチタスク環境において、自律走行車(AV)にとって重要な課題となる。
本研究では,このような複雑なシナリオの安全性を確保するために,ロバストで適応的なフレームワークを開発することにより,これらの課題に対処することを目的とする。
既存のアプローチは、信号のない交差点でのデモから、動的かつマルチタスクの振る舞いを学習する上で、信頼性の高い安全メカニズムを提供するのに苦労することが多い。
本研究では,DHOCBF(Dynamic High-Order Control Barrier Function)と拡散モデルであるDynamic Safety-Critical Diffuser(DSC-Diffuser)を統合し,信号のない交差点における適応性,安全性,マルチタスク運転のための堅牢なソリューションを提案する。
提案手法は目標指向のタスク誘導拡散モデルを導入し,実世界のデータから複数のタスクを同時に学習することを可能にする。
動的環境における運転安全をより確実にするために,提案フレームワークは周囲の車両の動きを考慮した動的に調整し,従来の制御バリア機能と比較して適応性を高めた。
DHOCBFの妥当性評価は, 障害物速度, サイズ, 不確実性, 位置の変動に適応し, 広範囲の複雑かつ不確実なシナリオにおける運転安全性を効果的に維持する上で, 頑健性を示すものである。
様々な場面のパフォーマンス評価により、DSC-Diffuserは現実的で安定的で一般化可能なポリシーを提供しており、多様な運転タスクに適応する柔軟性を備えている。
関連論文リスト
- Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments [49.30744329170107]
本稿では,動的障害物に関する情報を最小限に抑えた最適オンライン動作計画手法を提案する。
提案手法は,モデルシミュレーションによるオンライン最適計画のためのモンテカルロ木探索 (MCTS) と障害物回避のためのVelocity Obstacles (VO) を組み合わせた。
我々は,非線形モデル予測制御(NMPC)を含む最先端のプランナーに対して,衝突速度,計算,タスク性能の向上の観点から,我々の方法論の優位性を示す。
論文 参考訳(メタデータ) (2025-01-16T16:45:08Z) - SafeDrive: Knowledge- and Data-Driven Risk-Sensitive Decision-Making for Autonomous Vehicles with Large Language Models [14.790308656087316]
SafeDriveは、自律運転の安全性と適応性を高めるための、知識とデータ駆動型リスクに敏感な意思決定フレームワークである。
知識駆動型洞察と適応学習機構を統合することにより、不確実な条件下での堅牢な意思決定を保証する。
論文 参考訳(メタデータ) (2024-12-17T16:45:27Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
安全な運転プラクティスを再現する自律システムを開発するためには、人間のデータを分析することが不可欠だ。
本稿では,複数の軌道予測データセットにおける交通・安全規則の適合性の比較評価を行う。
論文 参考訳(メタデータ) (2024-11-04T09:21:00Z) - AdvDiffuser: Generating Adversarial Safety-Critical Driving Scenarios via Guided Diffusion [6.909801263560482]
AdvDiffuserは、ガイド付き拡散を通じて安全クリティカルな運転シナリオを生成するための敵対的なフレームワークである。
本稿では,AdvDiffuserが最小限のウォームアップエピソードデータを持つ様々なテストシステムに適用可能であることを示す。
論文 参考訳(メタデータ) (2024-10-11T02:03:21Z) - Enhanced Safety in Autonomous Driving: Integrating Latent State Diffusion Model for End-to-End Navigation [5.928213664340974]
本研究は自動運転の制御最適化問題における安全性問題に対処する。
本稿では,条件付きバリュー・アット・リスクに基づくソフトアクター批判を利用して,ポリシー最適化のための新しいモデルベースアプローチを提案する。
本手法では, 安全探索を誘導する最悪のアクターを導入し, 予測不可能なシナリオにおいても, 安全要件の厳密な遵守を確保する。
論文 参考訳(メタデータ) (2024-07-08T18:32:40Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
本稿では,視覚に基づくエンドツーエンド自動運転のための安全保証学習フレームワークを提案する。
我々は、勾配降下によりエンドツーエンドに訓練された微分制御バリア関数(dCBF)を備えた学習システムを設計する。
論文 参考訳(メタデータ) (2022-03-04T16:14:33Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Risk-Constrained Interactive Safety under Behavior Uncertainty for
Autonomous Driving [0.0]
許可された計画領域を制限する安全封筒は、行動の不確実性の存在下で解釈可能な安全性をもたらす。
人間は、安全封筒に違反する確率的リスクを受け入れることによって、密集した交通における安全と効率のバランスをとる。
論文 参考訳(メタデータ) (2021-02-05T08:33:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。