論文の概要: AI2-Active Safety: AI-enabled Interaction-aware Active Safety Analysis with Vehicle Dynamics
- arxiv url: http://arxiv.org/abs/2505.00322v1
- Date: Thu, 01 May 2025 05:46:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.239455
- Title: AI2-Active Safety: AI-enabled Interaction-aware Active Safety Analysis with Vehicle Dynamics
- Title(参考訳): AI2-Active Safety: 車両ダイナミクスを用いたAI対応インタラクション対応アクティブ安全分析
- Authors: Keshu Wu, Zihao Li, Sixu Li, Xinyue Ye, Dominique Lord, Yang Zhou,
- Abstract要約: 本稿では,AIを利用した対話型アクティブ安全分析フレームワークを提案する。
このフレームワークは、道路勾配を考慮した自転車モデルを用いて、車両のダイナミクスを正確に捉える。
並行して、ハイパーグラフベースのAIモデルが開発され、環境トラフィックの確率的軌跡を予測する。
- 参考スコア(独自算出の注目度): 8.557684007368046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an AI-enabled, interaction-aware active safety analysis framework that accounts for groupwise vehicle interactions. Specifically, the framework employs a bicycle model-augmented with road gradient considerations-to accurately capture vehicle dynamics. In parallel, a hypergraph-based AI model is developed to predict probabilistic trajectories of ambient traffic. By integrating these two components, the framework derives vehicle intra-spacing over a 3D road surface as the solution of a stochastic ordinary differential equation, yielding high-fidelity surrogate safety measures such as time-to-collision (TTC). To demonstrate its effectiveness, the framework is analyzed using stochastic numerical methods comprising 4th-order Runge-Kutta integration and AI inference, generating probability-weighted high-fidelity TTC (HF-TTC) distributions that reflect complex multi-agent maneuvers and behavioral uncertainties. Evaluated with HF-TTC against traditional constant-velocity TTC and non-interaction-aware approaches on highway datasets, the proposed framework offers a systematic methodology for active safety analysis with enhanced potential for improving safety perception in complex traffic environments.
- Abstract(参考訳): 本稿では,グループ車両間相互作用を考慮したAI対応能動安全分析フレームワークを提案する。
具体的には,道路勾配を考慮した自転車モデルを用いて車両の動態を正確に把握する。
並行して、ハイパーグラフベースのAIモデルが開発され、環境トラフィックの確率的軌跡を予測する。
これら2つの成分を統合することにより、このフレームワークは、確率的常微分方程式の解として3次元道路表面上での車両内接触を導出し、TTC(Time-to-collision)のような高忠実度サロゲート安全対策を導出する。
本フレームワークの有効性を実証するために, 4次ランゲ・クッタ積分とAI推論を含む確率的数値法を用いて, 複雑なマルチエージェント操作と行動の不確実性を反映した確率重み付き高忠実性TTC(HF-TTC)分布を生成する。
HF-TTCと従来の定速度TTCとハイウェイデータセットの非干渉対応アプローチを比較検討し、複雑な交通環境における安全知覚を向上させる可能性を高めた能動的安全分析のための体系的方法論を提供する。
関連論文リスト
- Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections [9.041849642602626]
信号のない交差点を通る安全かつ効率的な軌道を計画することは、自動運転車にとって重要な課題である。
本研究では,動的高次制御バリア関数(DHOCBF)と拡散モデル(DSC-Diffuser)を統合する安全クリティカルプランニング手法を提案する。
動的環境における運転安全をより確実にするために,提案したDHOCBFフレームワークは周囲の車両の動きを考慮した動的調整を行う。
論文 参考訳(メタデータ) (2024-11-29T11:57:00Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) は、自動運転車における安全なエンドツーエンド運転のためのフレームワークである。
Catは、安全クリティカルなシナリオでエージェントを訓練することで、運転エージェントの安全性を継続的に改善することを目的としている。
猫は、訓練中のエージェントに対抗する敵シナリオを効果的に生成できる。
論文 参考訳(メタデータ) (2023-10-19T02:49:31Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
強化学習アルゴリズムは、これらの課題に対処するための有望なアプローチとして登場した。
そこで本研究では,低コスト単一エージェントアプローチを用いて,T断面積を効率よく安全にナビゲートする問題に対処する。
提案手法により,AVはT断面積を効果的にナビゲートし,走行遅延,衝突最小化,総コストの面で従来の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2023-09-30T10:54:02Z) - Multi-Agent Chance-Constrained Stochastic Shortest Path with Application
to Risk-Aware Intelligent Intersection [15.149982804527182]
既存の自動交差点の深刻な課題は、運転環境や人間駆動車からの不確実性の検出と推論にある。
自動運転車(AV)と人間駆動車(HV)のためのリスク対応知的交差点システムを提案する。
論文 参考訳(メタデータ) (2022-10-03T06:49:23Z) - Modeling driver's evasive behavior during safety-critical lane
changes:Two-dimensional time-to-collision and deep reinforcement learning [19.649145869208617]
本研究の目的は,車線変更に伴う回避行動モデルの開発である。
安全に配慮した交通シミュレーションと予測衝突回避システムの開発を容易にする。
論文 参考訳(メタデータ) (2022-09-29T23:23:38Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
本稿では,高密度交通シナリオにおける対話型モーションプランニングのための新しい枠組みを提案する。
我々は,他車両の協調性に関する国際的ガイダンスを提供するインタラクション対応政策であるDeep Reinforcement Learning (RL) を通じて学習することを提案する。
学習されたポリシーは、ローカル最適化ベースのプランナーを推論し、対話的な振る舞いで誘導し、他の車両が収まらない場合に安全を維持しながら、密集したトラフィックに積極的にマージする。
論文 参考訳(メタデータ) (2021-07-09T16:43:12Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T02:42:33Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。