Twisted Convolutional Networks (TCNs): Enhancing Feature Interactions for Non-Spatial Data Classification
- URL: http://arxiv.org/abs/2412.00238v1
- Date: Fri, 29 Nov 2024 20:12:24 GMT
- Title: Twisted Convolutional Networks (TCNs): Enhancing Feature Interactions for Non-Spatial Data Classification
- Authors: Junbo Jacob Lian,
- Abstract summary: Twisted Convolutional Networks (TCNs) are designed to process one-dimensional data with arbitrary feature order and minimal spatial relationships.
This paper details the TCN architecture and its feature combination strategy, providing a comprehensive comparison with traditional CNNs, DeepSets, Transformers, and Graph Neural Networks (GNNs)
- Score: 0.0
- License:
- Abstract: Twisted Convolutional Networks (TCNs) are introduced as a novel neural network architecture designed to effectively process one-dimensional data with arbitrary feature order and minimal spatial relationships. Unlike traditional Convolutional Neural Networks (CNNs), which excel at handling structured two-dimensional data like images, TCNs reduce dependency on feature order by combining input features in innovative ways to create new representations. By explicitly enhancing feature interactions and employing diverse feature combinations, TCNs generate richer and more informative representations, making them especially effective for classification tasks on datasets with arbitrary feature arrangements. This paper details the TCN architecture and its feature combination strategy, providing a comprehensive comparison with traditional CNNs, DeepSets, Transformers, and Graph Neural Networks (GNNs). Extensive experiments on benchmark datasets demonstrate that TCNs achieve superior performance, particularly in classification scenarios involving one-dimensional data.
Related papers
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Interpretable Neural Networks with Random Constructive Algorithm [3.1200894334384954]
This paper introduces an Interpretable Neural Network (INN) incorporating spatial information to tackle the opaque parameterization process of random weighted neural networks.
It devises a geometric relationship strategy using a pool of candidate nodes and established relationships to select node parameters conducive to network convergence.
arXiv Detail & Related papers (2023-07-01T01:07:20Z) - Structure and Performance of Fully Connected Neural Networks: Emerging
Complex Network Properties [0.8484871864277639]
Complex Network (CN) techniques are proposed to analyze the structure and performance of fully connected neural networks.
We build a dataset with 4 thousand models and their respective CN properties.
Our findings suggest that CN properties play a critical role in the performance of fully connected neural networks.
arXiv Detail & Related papers (2021-07-29T14:53:52Z) - Latent Code-Based Fusion: A Volterra Neural Network Approach [21.25021807184103]
We propose a deep structure encoder using the recently introduced Volterra Neural Networks (VNNs)
We show that the proposed approach demonstrates a much-improved sample complexity over CNN-based auto-encoder with a superb robust classification performance.
arXiv Detail & Related papers (2021-04-10T18:29:01Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Recurrent Graph Tensor Networks: A Low-Complexity Framework for
Modelling High-Dimensional Multi-Way Sequence [24.594587557319837]
We develop a graph filter framework for approximating the modelling of hidden states in Recurrent Neural Networks (RNNs)
The proposed framework is validated through several multi-way sequence modelling tasks and benchmarked against traditional RNNs.
We show that the proposed RGTN is capable of not only out-performing standard RNNs, but also mitigating the Curse of Dimensionality associated with traditional RNNs.
arXiv Detail & Related papers (2020-09-18T10:13:36Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
We propose a novel dynamic heterogeneous network embedding method, termed as DyHATR.
It uses hierarchical attention to learn heterogeneous information and incorporates recurrent neural networks with temporal attention to capture evolutionary patterns.
We benchmark our method on four real-world datasets for the task of link prediction.
arXiv Detail & Related papers (2020-04-01T17:16:47Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network (GCN) is an emerging technique that performs learning and reasoning on graph data.
We argue that existing designs of GCN forgo modeling cross features, making GCN less effective for tasks or data where cross features are important.
We design a new operator named Cross-feature Graph Convolution, which explicitly models the arbitrary-order cross features with complexity linear to feature dimension and order size.
arXiv Detail & Related papers (2020-03-05T13:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.