論文の概要: Evaluating the Consistency of LLM Evaluators
- arxiv url: http://arxiv.org/abs/2412.00543v1
- Date: Sat, 30 Nov 2024 17:29:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:47:07.122119
- Title: Evaluating the Consistency of LLM Evaluators
- Title(参考訳): LLM評価器の整合性評価
- Authors: Noah Lee, Jiwoo Hong, James Thorne,
- Abstract要約: 大規模言語モデル(LLM)は、一般的な評価指標としての可能性を示している。
評価器としての整合性はまだ検討されており、LCM評価器の信頼性に関する懸念が高まっている。
- 参考スコア(独自算出の注目度): 9.53888551630878
- License:
- Abstract: Large language models (LLMs) have shown potential as general evaluators along with the evident benefits of speed and cost. While their correlation against human annotators has been widely studied, consistency as evaluators is still understudied, raising concerns about the reliability of LLM evaluators. In this paper, we conduct extensive studies on the two aspects of consistency in LLM evaluations, Self-Consistency (SC) and Inter-scale Consistency (IC), on different scoring scales and criterion granularity with open-source and proprietary models. Our comprehensive analysis demonstrates that strong proprietary models are not necessarily consistent evaluators, highlighting the importance of considering consistency in assessing the capability of LLM evaluators.
- Abstract(参考訳): 大規模言語モデル(LLM)は、スピードとコストの明らかな利点とともに、一般的な評価指標としての可能性を示している。
ヒトのアノテータとの相関は広く研究されているが、評価器としての整合性はまだ検討されており、LLM評価器の信頼性に関する懸念が高まっている。
本稿では, LLM評価における一貫性, 自己整合性 (SC) とスケール間整合性 (IC) の2つの側面を, オープンソースモデルとプロプライエタリモデルによる評価尺度, 基準粒度について, 広範囲にわたって検討する。
我々の総合的な分析は、強力なプロプライエタリモデルが必ずしも一貫性のある評価器であるとは限らないことを示し、LCM評価器の能力を評価する上で一貫性を考慮することの重要性を強調している。
関連論文リスト
- LLaVA-Critic: Learning to Evaluate Multimodal Models [110.06665155812162]
本稿では,LLaVA-Criticについて紹介する。LLaVA-Criticは,汎用評価器として設計された,最初のオープンソースの大規模マルチモーダルモデル(LMM)である。
LLaVA-Criticは、さまざまな評価基準とシナリオを組み込んだ高品質な批判的インストラクションフォローデータセットを使用してトレーニングされている。
論文 参考訳(メタデータ) (2024-10-03T17:36:33Z) - From Text to Insight: Leveraging Large Language Models for Performance Evaluation in Management [6.70908766695241]
本研究では,大規模言語モデル(LLM),特にGPT-4の可能性を探り,組織的タスクパフォーマンス評価における客観性を高める。
以上の結果から,GPT評価は人間の評価に匹敵するが,一貫性と信頼性が高いことが示唆された。
LLMはテキストベースのデータから意味のある構成物を抽出できるが、その範囲は特定のパフォーマンス評価形式に限定されている。
論文 参考訳(メタデータ) (2024-08-09T20:35:10Z) - A Systematic Survey and Critical Review on Evaluating Large Language Models: Challenges, Limitations, and Recommendations [35.12731651234186]
大規模言語モデル(LLM)は、その顕著な能力により、最近大きな注目を集めている。
我々はこれらの不整合や信頼できない評価を引き起こす主要な課題と限界を体系的にレビューする。
批判的なレビューに基づいて、LLM評価が再現可能で、信頼性があり、堅牢であることを保証するために、私たちの視点と勧告を提示します。
論文 参考訳(メタデータ) (2024-07-04T17:15:37Z) - Large Language Models as Partners in Student Essay Evaluation [5.479797073162603]
本稿では,3つのシナリオで実際の学生エッセイを用いて,Large Language Models (LLMs) を用いて評価を行った。
その結果, LLMと教職員評価の相関関係は, 事前に特定したルーリックとの相互比較シナリオにおいて強い相関性を示した。
論文 参考訳(メタデータ) (2024-05-28T22:28:50Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
大規模言語モデル(LLM)は、生成された自然言語の品質を評価する上で有望な能力を示している。
LLMは依然として評価のバイアスを示しており、人間の評価と整合したコヒーレントな評価を生成するのに苦労することが多い。
Pairwise-preference Search (PairS)は、LLMを用いてペア比較を行い、候補テキストを効率よくランク付けする不確実性誘導探索手法である。
論文 参考訳(メタデータ) (2024-03-25T17:11:28Z) - TrustScore: Reference-Free Evaluation of LLM Response Trustworthiness [58.721012475577716]
大規模言語モデル(LLM)は、様々な領域にまたがる印象的な能力を示しており、その実践的応用が急増している。
本稿では,行動整合性の概念に基づくフレームワークであるTrustScoreを紹介する。
論文 参考訳(メタデータ) (2024-02-19T21:12:14Z) - The Generative AI Paradox on Evaluation: What It Can Solve, It May Not
Evaluate [17.77014177096838]
本稿では,ジェネレーションタスクにおけるLarge Language Models (LLMs) が同等に評価できるという仮定を考察する。
質問応答(QA)における3つのLLMと1つのオープンソースLMの性能評価と,TriviaQAデータセットを用いた評価課題について述べる。
論文 参考訳(メタデータ) (2024-02-09T06:16:08Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
大規模言語モデル(LLM)は、学術と産業の両方で人気が高まっている。
本稿では,評価方法,評価方法,評価方法の3つの重要な側面に焦点をあてる。
論文 参考訳(メタデータ) (2023-07-06T16:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。