論文の概要: Optimal Particle-based Approximation of Discrete Distributions (OPAD)
- arxiv url: http://arxiv.org/abs/2412.00545v1
- Date: Sat, 30 Nov 2024 17:36:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:50:25.474192
- Title: Optimal Particle-based Approximation of Discrete Distributions (OPAD)
- Title(参考訳): 離散分布の最適粒子近似(OPAD)
- Authors: Hadi Mohasel Afshar, Gilad Francis, Sally Cripps,
- Abstract要約: 粒子の集合に対して、ターゲット分布から(粒子をベースとした)近似のクルバック・リブラー(KL)の発散を最小限に抑える一意の重み付け機構が存在することを示す。
既存の粒子法で既に計算されている値に基づいて最適な重みを求めることができることを示す。
- 参考スコア(独自算出の注目度): 7.127829790714167
- License:
- Abstract: Particle-based methods include a variety of techniques, such as Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC), for approximating a probabilistic target distribution with a set of weighted particles. In this paper, we prove that for any set of particles, there is a unique weighting mechanism that minimizes the Kullback-Leibler (KL) divergence of the (particle-based) approximation from the target distribution, when that distribution is discrete -- any other weighting mechanism (e.g. MCMC weighting that is based on particles' repetitions in the Markov chain) is sub-optimal with respect to this divergence measure. Our proof does not require any restrictions either on the target distribution, or the process by which the particles are generated, other than the discreteness of the target. We show that the optimal weights can be determined based on values that any existing particle-based method already computes; As such, with minimal modifications and no extra computational costs, the performance of any particle-based method can be improved. Our empirical evaluations are carried out on important applications of discrete distributions including Bayesian Variable Selection and Bayesian Structure Learning. The results illustrate that our proposed reweighting of the particles improves any particle-based approximation to the target distribution consistently and often substantially.
- Abstract(参考訳): 粒子ベースの手法には、Markov Chain Monte Carlo (MCMC) やSequential Monte Carlo (SMC) のような様々な技術が含まれており、重み付けされた粒子の集合で確率的目標分布を近似する。
本稿では, 任意の粒子集合に対して, 分布が離散である場合, ターゲット分布からの(粒子ベース)近似のクルバック・リーバー(KL)偏差を最小化する一意な重み付け機構が存在することを証明した。
我々の証明では、対象の分布や粒子が生成される過程について、目標の離散性以外のいかなる制限も必要としない。
本稿では,既存の粒子法が既に計算している値に基づいて最適な重み付けを決定できることを示し,最小限の修正と余剰計算コストを伴わないため,粒子法の性能を向上させることができる。
ベイジアン変数選択やベイジアン構造学習などの離散分布の重要応用について実験的検討を行った。
その結果, 提案した粒子の再重み付けにより, ターゲット分布に対する粒子ベースの近似が一定かつ実質的に改善されることが示唆された。
関連論文リスト
- NETS: A Non-Equilibrium Transport Sampler [15.58993313831079]
我々は、Non-Equilibrium Transport Sampler (NETS)と呼ばれるアルゴリズムを提案する。
NETSはJarzynskiの平等に基づいて、重要サンプリング(AIS)の亜種と見なすことができる。
このドリフトは、様々な目的関数の最小化であり、全て偏りのない方法で推定できることを示す。
論文 参考訳(メタデータ) (2024-10-03T17:35:38Z) - Electrostatics-based particle sampling and approximate inference [0.0]
静電気学とニュートン力学の原理に基づく新しい粒子に基づくサンプリングおよび近似推論法が導入された。
より一般的な推論問題において、離散時間離散空間のアルゴリズム設計が使用される。
論文 参考訳(メタデータ) (2024-06-28T16:53:06Z) - Understanding Diffusion Models by Feynman's Path Integral [2.4373900721120285]
ファインマン積分経路を用いた拡散モデルの新しい定式化を導入する。
この定式化はスコアベース生成モデルの包括的記述を提供する。
また、後方微分方程式と損失関数の導出を示す。
論文 参考訳(メタデータ) (2024-03-17T16:24:29Z) - Variance Reduction of Resampling for Sequential Monte Carlo [0.0]
再サンプリング方式は、シーケンシャルモンテカルロの低重量粒子を目標分布を表す高重量粒子に切り替える方法を提供する。
そこで本研究では,再サンプリングのための中央値エルゴディディティを持つ反復的決定論的領域を提案し,他の再サンプリング手法と比較して最も低い分散を実現した。
論文 参考訳(メタデータ) (2023-09-10T17:25:43Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Unsupervised Learning of Sampling Distributions for Particle Filters [80.6716888175925]
観測結果からサンプリング分布を学習する4つの方法を提案する。
実験により、学習されたサンプリング分布は、設計された最小縮退サンプリング分布よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2023-02-02T15:50:21Z) - Machine-Learned Exclusion Limits without Binning [0.0]
我々は、1次元信号と背景確率密度関数を抽出するためにカーネル密度推定器(KDE)を含むMLL法を拡張した。
本手法は,レプトン対に崩壊するエキゾチックヒッグス粒子の探索と,レプトン対に崩壊するZ'$ボソンの2例に適用する。
論文 参考訳(メタデータ) (2022-11-09T11:04:50Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
モーフィファイド相互作用エネルギー降下(MIED)と呼ばれる新しい最適化に基づくサンプリング手法を提案する。
MIEDは、モル化相互作用エネルギー(MIE)と呼ばれる確率測度に関する新しいクラスのエネルギーを最小化する
我々は,制約のないサンプリング問題に対して,我々のアルゴリズムがSVGDのような既存の粒子ベースアルゴリズムと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-10-24T16:54:18Z) - Targeted Separation and Convergence with Kernel Discrepancies [61.973643031360254]
カーネルベースの不一致測度は、(i)ターゲットPを他の確率測度から分離するか、(ii)Pへの弱収束を制御する必要がある。
本稿では, (i) と (ii) を保証するのに十分な,必要な新しい条件を導出する。
可分距離空間上のMDDに対して、ボヒナー埋め込み可測度を分離するカーネルを特徴づけ、すべての測度を非有界カーネルと分離するための単純な条件を導入する。
論文 参考訳(メタデータ) (2022-09-26T16:41:16Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
カーネル平均埋め込みは、その無限次元平均埋め込みによる確率測度を表す。
カーネルが特徴的である場合、カーネルの総和密度を持つ分布は密度が高いことを示す。
有限サンプル設定でそのような分布を最適化するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-06-18T08:33:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。