論文の概要: Improving Decoupled Posterior Sampling for Inverse Problems using Data Consistency Constraint
- arxiv url: http://arxiv.org/abs/2412.00664v1
- Date: Sun, 01 Dec 2024 03:57:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:51:24.364301
- Title: Improving Decoupled Posterior Sampling for Inverse Problems using Data Consistency Constraint
- Title(参考訳): データ一貫性制約を用いた逆問題に対する分離後サンプリングの改善
- Authors: Zhi Qi, Shihong Yuan, Yuyin Yuan, Linling Kuang, Yoshiyuki Kabashima, Xiangming Meng,
- Abstract要約: 本稿では,逆問題に対するGDPS ( Guided Decoupled Posterior Smpling) を提案する。
我々はこの手法を潜在拡散モデルとツイーディの公式に拡張する。
GDPSは最先端のパフォーマンスを実現し、既存の手法よりも精度を向上させる。
- 参考スコア(独自算出の注目度): 13.285652967956652
- License:
- Abstract: Diffusion models have shown strong performances in solving inverse problems through posterior sampling while they suffer from errors during earlier steps. To mitigate this issue, several Decoupled Posterior Sampling methods have been recently proposed. However, the reverse process in these methods ignores measurement information, leading to errors that impede effective optimization in subsequent steps. To solve this problem, we propose Guided Decoupled Posterior Sampling (GDPS) by integrating a data consistency constraint in the reverse process. The constraint performs a smoother transition within the optimization process, facilitating a more effective convergence toward the target distribution. Furthermore, we extend our method to latent diffusion models and Tweedie's formula, demonstrating its scalability. We evaluate GDPS on the FFHQ and ImageNet datasets across various linear and nonlinear tasks under both standard and challenging conditions. Experimental results demonstrate that GDPS achieves state-of-the-art performance, improving accuracy over existing methods.
- Abstract(参考訳): 拡散モデルは、初期のステップでエラーに悩まされている間、後続サンプリングによって逆問題の解法において強い性能を示した。
この問題を緩和するために、いくつかの分離後サンプリング法が最近提案されている。
しかし、これらの手法の逆過程は測定情報を無視し、その後のステップで効果的な最適化を阻害するエラーを引き起こす。
この問題を解決するために、逆プロセスにデータ一貫性制約を統合することにより、GDPS( Guided Decoupled Posterior Sampling)を提案する。
制約は最適化プロセス内でよりスムーズな遷移を行い、目標分布へのより効果的な収束を促進する。
さらに,本手法を潜在拡散モデルとツイーディの公式に拡張し,その拡張性を示す。
FFHQ と ImageNet のデータセット上のGDPS を,標準条件と課題条件の両方で,様々な線形および非線形タスクにわたって評価する。
実験の結果,GDPSは最先端性能を実現し,既存手法よりも精度が向上した。
関連論文リスト
- Diffusion State-Guided Projected Gradient for Inverse Problems [82.24625224110099]
逆問題に対する拡散状態ガイド型射影勾配(DiffStateGrad)を提案する。
DiffStateGrad は拡散過程の中間状態の低ランク近似である部分空間に測定勾配を投影する。
DiffStateGradは、測定手順のステップサイズとノイズの選択によって拡散モデルのロバスト性を向上させる。
論文 参考訳(メタデータ) (2024-10-04T14:26:54Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
本研究では,これらの問題に対処するために,Annealed Importance Smpling (AIS)アプローチを提案する。
シークエンシャルモンテカルロサンプリング器とVIの強度を組み合わせることで、より広い範囲の後方分布を探索し、徐々にターゲット分布に接近する。
実験結果から,本手法はより厳密な変動境界,高い対数類似度,より堅牢な収束率で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-08-13T08:09:05Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
そこで本稿では, 償却変分推論の観点から, 拡散による逆問題の解法を提案する。
我々の償却推論は、測定結果を対応するクリーンデータの暗黙の後方分布に直接マッピングする関数を学習し、未知の計測でも単一ステップの後方サンプリングを可能にする。
論文 参考訳(メタデータ) (2024-07-23T02:14:18Z) - CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems [3.3969056208620128]
我々は, 高い復元品質を維持しつつ, 推論ステップの境界を1-2 NFEに推し進めることを提案する。
本手法は拡散型逆問題解法における新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-07-17T15:57:50Z) - Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing [84.97865583302244]
本稿では,新しいノイズアニーリングプロセスに依存するDAPS (Decoupled Annealing Posterior Sampling) 法を提案する。
DAPSは、複数の画像復元タスクにおけるサンプル品質と安定性を著しく改善する。
例えば、フェーズ検索のためのFFHQ 256データセット上で、PSNRが30.72dBである場合、既存の手法と比較して9.12dBの改善となる。
論文 参考訳(メタデータ) (2024-07-01T17:59:23Z) - Deep Data Consistency: a Fast and Robust Diffusion Model-based Solver for Inverse Problems [0.0]
本研究では,拡散モデルを用いた逆問題解法において,データ一貫性ステップをディープラーニングモデルで更新するディープデータ一貫性(DDC)を提案する。
線形および非線形タスクにおける最先端手法と比較して、DDCは類似度と実性の両方の指標の優れた性能を示す。
論文 参考訳(メタデータ) (2024-05-17T12:54:43Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
近年の拡散モデルは、特定の逆問題に対して再訓練することなく、ノイズの多い線形逆問題に対する有望なゼロショット解を提供する。
この発見に触発されて、我々は、最大推定値から決定されるより原理化された共分散を用いて、最近の手法を改善することを提案する。
論文 参考訳(メタデータ) (2024-02-03T13:35:39Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
我々は,現在の解法がデータ多様体からサンプルパスを逸脱し,エラーが蓄積することを示す。
この問題に対処するため、多様体の制約に着想を得た追加の補正項を提案する。
本手法は理論上も経験上も従来の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-02T09:06:10Z) - Consistency analysis of bilevel data-driven learning in inverse problems [1.0705399532413618]
本稿では,データからの正規化パラメータの適応学習を最適化により検討する。
線形逆問題に対する我々のフレームワークの実装方法を示す。
勾配降下法を用いてオンライン数値スキームを導出する。
論文 参考訳(メタデータ) (2020-07-06T12:23:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。