論文の概要: FlashSLAM: Accelerated RGB-D SLAM for Real-Time 3D Scene Reconstruction with Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2412.00682v1
- Date: Sun, 01 Dec 2024 05:44:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:45:47.583615
- Title: FlashSLAM: Accelerated RGB-D SLAM for Real-Time 3D Scene Reconstruction with Gaussian Splatting
- Title(参考訳): FlashSLAM:Gaussian Splattingを用いたリアルタイム3次元シーン再構成のためのRGB-D SLAMの高速化
- Authors: Phu Pham, Damon Conover, Aniket Bera,
- Abstract要約: FlashSLAMは、3Dガウススプラッティングを有効かつ堅牢な3Dシーン再構築に活用する新しいSLAMアプローチである。
既存の3DGSベースのSLAMメソッドは、スパースビューの設定や大きなカメラの動きの間、しばしば不足する。
提案手法は,従来手法よりも平均追跡精度を最大92%向上させる。
- 参考スコア(独自算出の注目度): 14.130327598928778
- License:
- Abstract: We present FlashSLAM, a novel SLAM approach that leverages 3D Gaussian Splatting for efficient and robust 3D scene reconstruction. Existing 3DGS-based SLAM methods often fall short in sparse view settings and during large camera movements due to their reliance on gradient descent-based optimization, which is both slow and inaccurate. FlashSLAM addresses these limitations by combining 3DGS with a fast vision-based camera tracking technique, utilizing a pretrained feature matching model and point cloud registration for precise pose estimation in under 80 ms - a 90% reduction in tracking time compared to SplaTAM - without costly iterative rendering. In sparse settings, our method achieves up to a 92% improvement in average tracking accuracy over previous methods. Additionally, it accounts for noise in depth sensors, enhancing robustness when using unspecialized devices such as smartphones. Extensive experiments show that FlashSLAM performs reliably across both sparse and dense settings, in synthetic and real-world environments. Evaluations on benchmark datasets highlight its superior accuracy and efficiency, establishing FlashSLAM as a versatile and high-performance solution for SLAM, advancing the state-of-the-art in 3D reconstruction across diverse applications.
- Abstract(参考訳): 本稿では, 3次元ガウススプラッティングを有効かつ堅牢な3次元シーン再構成に活用する新しいSLAM手法であるFlashSLAMを提案する。
既存の3DGSベースのSLAM法は、緩やかな視界設定や、勾配降下に基づく最適化に依存しているため、大きなカメラの動き中に、遅くて不正確であることが多い。
FlashSLAMは、3DGSと高速な視覚ベースのカメラトラッキング技術を組み合わせることでこれらの制限に対処し、事前訓練された特徴マッチングモデルとポイントクラウドの登録を使用して80ミリ秒未満の正確なポーズ推定を行う。
スパース設定では,従来の手法よりも平均トラッキング精度が最大92%向上した。
さらに、深度センサーのノイズを考慮し、スマートフォンのような特殊なデバイスを使用する際の堅牢性を高める。
大規模な実験により、FlashSLAMは、合成および実世界の環境において、スパースと密集の両方で確実に機能することが示された。
ベンチマークデータセットの評価では、その優れた精度と効率を強調し、SLAMの汎用的で高性能なソリューションとしてFlashSLAMを確立し、さまざまなアプリケーションにわたる最先端の3D再構築を推進している。
関連論文リスト
- IG-SLAM: Instant Gaussian SLAM [6.228980850646457]
3D Gaussian SplattingはSLAMシステムにおける代替シーン表現として期待できる結果を示した。
本稿では,RGBのみの高密度SLAMシステムであるIG-SLAMについて述べる。
我々は、最先端のRGBのみのSLAMシステムと競合する性能を示し、高速な動作速度を実現する。
論文 参考訳(メタデータ) (2024-08-02T09:07:31Z) - Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splattingは、RGBのみの高密度SLAMの幾何学と外観の強力な表現として登場した。
本稿では,高密度な3次元ガウス写像表現を持つRGBのみのSLAMシステムを提案する。
Replica、TUM-RGBD、ScanNetのデータセットに対する実験は、グローバルに最適化された3Dガウスの有効性を示している。
論文 参考訳(メタデータ) (2024-05-26T12:26:54Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
カメラ画像と慣性測定による地図表現に3Dガウスアンを用いることで、精度の高いSLAMが実現できることを示す。
我々の手法であるMM3DGSは、より高速なスケール認識と軌道追跡の改善により、事前レンダリングの限界に対処する。
また,カメラと慣性測定ユニットを備えた移動ロボットから収集したマルチモーダルデータセットUT-MMもリリースした。
論文 参考訳(メタデータ) (2024-04-01T04:57:41Z) - CG-SLAM: Efficient Dense RGB-D SLAM in a Consistent Uncertainty-aware 3D Gaussian Field [46.8198987091734]
本稿では,新しい不確実性を考慮した3次元ガウス場に基づく高密度RGB-D SLAMシステム,すなわちCG-SLAMを提案する。
各種データセットの実験により、CG-SLAMは、最大15Hzの追従速度で優れた追従性能とマッピング性能を達成することが示された。
論文 参考訳(メタデータ) (2024-03-24T11:19:59Z) - Gaussian Splatting SLAM [16.3858380078553]
単分子SLAMにおける3次元ガウス散乱の最初の応用について述べる。
我々の方法は3fpsで動作し、正確な追跡、マッピング、高品質なレンダリングに必要な表現を統一する。
ライブカメラから高忠実度で連続的に3Dシーンを再構築するためには、いくつかの革新が必要である。
論文 参考訳(メタデータ) (2023-12-11T18:19:04Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z) - UncLe-SLAM: Uncertainty Learning for Dense Neural SLAM [60.575435353047304]
我々は、高密度ニューラルネットワークの同時局所化とマッピング(SLAM)のための不確実性学習フレームワークを提案する。
本稿では,2次元入力データのみから自己教師付きで学習可能なセンサ不確実性推定のためのオンラインフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-19T16:26:25Z) - NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM [111.83168930989503]
NICER-SLAMは、カメラポーズと階層的なニューラル暗黙マップ表現を同時に最適化するRGB SLAMシステムである。
近年のRGB-D SLAMシステムと競合する高密度マッピング,追跡,新しいビュー合成において,高い性能を示す。
論文 参考訳(メタデータ) (2023-02-07T17:06:34Z) - ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of
Signed Distance Fields [2.0625936401496237]
ESLAMは、未知のカメラポーズでRGB-Dフレームを読み出し、シーン表現を漸進的に再構築する。
ESLAMは3次元再構成の精度を向上し、最先端の高密度視覚SLAM法のカメラローカライゼーションを50%以上向上する。
論文 参考訳(メタデータ) (2022-11-21T18:25:14Z) - Dense RGB-D-Inertial SLAM with Map Deformations [25.03159756734727]
密結合型RGB-D-慣性SLAMシステムを提案する。
我々は,RGB-DのみのSLAMシステムよりも,低テクスチャ,低幾何学的変動の速い動きや周期に対して,より堅牢であることを示す。
論文 参考訳(メタデータ) (2022-07-22T08:33:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。