DPE-Net: Dual-Parallel Encoder Based Network for Semantic Segmentation of Polyps
- URL: http://arxiv.org/abs/2412.00888v2
- Date: Tue, 03 Dec 2024 13:30:51 GMT
- Title: DPE-Net: Dual-Parallel Encoder Based Network for Semantic Segmentation of Polyps
- Authors: Malik Abdul Manan, Feng Jinchao, Shahzad Ahmed, Abdul Raheem,
- Abstract summary: In medical imaging, efficient segmentation of colon polyps plays a pivotal role in minimally invasive solutions for colorectal cancer.
This study introduces a novel approach employing two parallel encoder branches within a network for polyp segmentation.
One branch of the encoder incorporates the dual convolution blocks that have the capability to maintain feature information over increased depths.
The other block embraces the single convolution block with the addition of the previous layer's feature, offering diversity in feature extraction within the encoder.
- Score: 0.0
- License:
- Abstract: In medical imaging, efficient segmentation of colon polyps plays a pivotal role in minimally invasive solutions for colorectal cancer. This study introduces a novel approach employing two parallel encoder branches within a network for polyp segmentation. One branch of the encoder incorporates the dual convolution blocks that have the capability to maintain feature information over increased depths, and the other block embraces the single convolution block with the addition of the previous layer's feature, offering diversity in feature extraction within the encoder, combining them before transpose layers with a depth-wise concatenation operation. Our model demonstrated superior performance, surpassing several established deep-learning architectures on the Kvasir and CVC-ClinicDB datasets, achieved a Dice score of 0.919, a mIoU of 0.866 for the Kvasir dataset, and a Dice score of 0.931 and a mIoU of 0.891 for the CVC-ClinicDB. The visual and quantitative results highlight the efficacy of our model, potentially setting a new model in medical image segmentation.
Related papers
- Multi-Layer Feature Fusion with Cross-Channel Attention-Based U-Net for Kidney Tumor Segmentation [0.0]
U-Net based deep learning techniques are emerging as a promising approach for automated medical image segmentation.
We present an improved U-Net based model for end-to-end automated semantic segmentation of CT scan images to identify renal tumors.
arXiv Detail & Related papers (2024-10-20T19:02:41Z) - Polyp segmentation in colonoscopy images using DeepLabV3++ [3.0182171147100076]
We introduce the DeepLabv3++ model which is an enhanced version of the DeepLabv3+ architecture.
The proposed model incorporates diverse separable convolutional layers and attention mechanisms within the MSPP block, enhancing its capacity to capture multi-scale and directional features.
The experimental analysis shows that DeepLabV3++ outperforms several state-of-the-art models in polyp segmentation tasks.
arXiv Detail & Related papers (2024-07-27T19:24:55Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Deep Learning Framework with Multi-Head Dilated Encoders for Enhanced
Segmentation of Cervical Cancer on Multiparametric Magnetic Resonance Imaging [0.6597195879147557]
T2-weighted magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) are essential components for cervical cancer diagnosis.
We propose a novel multi-head framework that uses dilated convolutions and shared residual connections for separate encoding of multiparametric MRI images.
arXiv Detail & Related papers (2023-06-19T19:41:21Z) - Multi Kernel Positional Embedding ConvNeXt for Polyp Segmentation [7.31341312596412]
We propose a novel framework composed of ConvNeXt backbone and Multi Kernel Positional Embedding block.
Our model achieves the Dice coefficient of 0.8818 and the IOU score of 0.8163 on the Kvasir-SEG dataset.
arXiv Detail & Related papers (2023-01-17T03:12:57Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.