論文の概要: PIAD-SRNN: Physics-Informed Adaptive Decomposition in State-Space RNN
- arxiv url: http://arxiv.org/abs/2412.00994v2
- Date: Thu, 10 Jul 2025 18:37:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 14:01:04.781238
- Title: PIAD-SRNN: Physics-Informed Adaptive Decomposition in State-Space RNN
- Title(参考訳): PIAD-SRNN:状態空間RNNにおける物理インフォームド適応分解
- Authors: Ahmad Mohammadshirazi, Pinaki Prasad Guha Neogi, Rajiv Ramnath,
- Abstract要約: 時系列予測は、精度と効率のトレードオフを要求することが多い。
物理インフォームド適応分解状態空間RNNであるPIAD-SRNNを提案する。
屋内空気質データセットにおけるPIAD-SRNNの性能評価を行った。
- 参考スコア(独自算出の注目度): 1.3654846342364306
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Time series forecasting often demands a trade-off between accuracy and efficiency. While recent Transformer models have improved forecasting capabilities, they come with high computational costs. Linear-based models have shown better accuracy than Transformers but still fall short of ideal performance. We propose PIAD-SRNN, a physics-informed adaptive decomposition state-space RNN, that separates seasonal and trend components and embeds domain equations in a recurrent framework. We evaluate PIAD-SRNN's performance on indoor air quality datasets, focusing on CO2 concentration prediction across various forecasting horizons, and results demonstrate that it consistently outperforms SoTA models in both long-term and short-term time series forecasting, including transformer-based architectures, in terms of both MSE and MAE. Besides proposing PIAD-SRNN which balances accuracy with efficiency, this paper also provides four curated datasets. Code and data: https://github.com/ahmad-shirazi/DSSRNN
- Abstract(参考訳): 時系列予測は、精度と効率のトレードオフを要求することが多い。
最近のTransformerモデルでは予測能力が改善されているが、計算コストが高い。
線形ベースモデルはトランスフォーマーよりも精度が良いが、それでも理想的な性能には達していない。
本稿では,物理インフォームド適応分解状態空間RNNであるPIAD-SRNNを提案する。
PIAD-SRNNによる室内空気質データセットの性能評価を行い、様々な予測地平線におけるCO2濃度予測に焦点をあてた結果、MSEとMAEの両方の観点から、トランスフォーマーベースアーキテクチャを含む長期および短期の時系列予測において、SoTAモデルよりも一貫して優れていることが示された。
精度と効率のバランスをとるPIAD-SRNNの提案に加えて、本論文は4つのキュレートされたデータセットも提供する。
コードとデータ:https://github.com/ahmad-shirazi/DSSRNN
関連論文リスト
- MAWIFlow Benchmark: Realistic Flow-Based Evaluation for Network Intrusion Detection [47.86433139298671]
本稿では,MAWILAB v1.1データセットから得られたフローベースベンチマークであるMAWIFlowを紹介する。
得られたデータセットは、2011年1月、2016年、2021年に太平洋横断のバックボーンのトラフィックから引き出された、時間的に異なるサンプルで構成されている。
決定木、ランダムフォレスト、XGBoost、ロジスティック回帰を含む伝統的な機械学習手法は、CNN-BiLSTMアーキテクチャに基づいたディープラーニングモデルと比較される。
論文 参考訳(メタデータ) (2025-06-20T14:51:35Z) - Feasibility Study of CNNs and MLPs for Radiation Heat Transfer in 2-D Furnaces with Spectrally Participative Gases [0.3495246564946556]
そこで我々は,2次元壁状領域における放射熱伝達解を近似する代理モデルを構築した。
この研究の独創性は、CNNアーキテクチャに適合するために問題(ガスと壁の特性)の入力を適応させることにある。
CNNアーキテクチャの性能は、より古典的なアーキテクチャと比較される。
論文 参考訳(メタデータ) (2025-06-02T14:06:44Z) - Comparison of CNN-based deep learning architectures for unsteady CFD acceleration on small datasets [0.0]
本研究では、非定常計算流体力学(CFD)シミュレーションを高速化するための高度な畳み込みニューラルネットワーク(CNN)アーキテクチャの比較を行った。
CNNは, 自己回帰時系列予測において, 予測精度とロバスト性を決定するために, 同一条件下で評価された。
ConvLSTM-UNetは、特に差値計算において、より低い最大誤差と安定した残差を達成する他のモデルよりも一貫して優れていた。
論文 参考訳(メタデータ) (2025-02-06T03:30:49Z) - Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks [3.1484174280822845]
本稿では, 簡易な実装, 効率的, 堅牢な性能で, センサとモデル識別の問題を共同で解決する手法を提案する。
SINDy-SHREDはGated Recurrent Unitsを使用してスパースセンサー計測と浅いネットワークデコーダをモデル化し、潜在状態空間からフルタイムフィールドを再構築する。
本研究では, 乱流, 海面温度の実環境センサ計測, 直接ビデオデータなどのPDEデータに関する系統的研究を行った。
論文 参考訳(メタデータ) (2025-01-23T02:18:13Z) - Jacobian-Enforced Neural Networks (JENN) for Improved Data Assimilation Consistency in Dynamical Models [0.0]
機械学習ベースの天気モデルは正確な予測を生成する上で大きな可能性を示してきたが、データ同化タスクに適用した場合に苦労した。
本研究では、ニューラルネットワーク(NN)をエミュレートした力学系におけるDA整合性を高めるために設計された、Jacobian-Enforced Neural Network(JENN)フレームワークを紹介する。
論文 参考訳(メタデータ) (2024-12-02T00:12:51Z) - Adaptive Physics-Guided Neural Network [0.0]
本稿では,画像データから品質特性を予測するための適応型物理誘導ニューラルネットワーク(APGNN)フレームワークを提案する。
APGNNは、データ駆動と物理インフォームド予測を適応的にバランスさせ、異なる環境におけるモデルの精度と堅牢性を高める。
実世界の実験では、APGNNは多様な熱画像データセットにおいて一貫して優れた性能を示した。
論文 参考訳(メタデータ) (2024-11-15T09:28:55Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Gridded Transformer Neural Processes for Large Unstructured Spatio-Temporal Data [47.14384085714576]
本稿では,非構造化観測を行うための格子状擬似トークンPと,効率的な注意機構を利用する格子状擬似トークンを含むプロセッサを紹介する。
提案手法は,大規模データを含む様々な合成および実世界の回帰タスクにおいて,強いベースラインを一貫して上回る。
実生活実験は気象データに基づいて行われ、気象モデルパイプラインで大規模に適用した場合の性能と計算上の利点をもたらすアプローチの可能性を示す。
論文 参考訳(メタデータ) (2024-10-09T10:00:56Z) - Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Graph Neural Networks for Pressure Estimation in Water Distribution
Systems [44.99833362998488]
水分配ネットワーク(WDN)における圧力と流量の推定により、水管理会社は制御操作を最適化できる。
物理に基づくモデリングとデータ駆動型アプローチであるグラフニューラルネットワーク(GNN)を組み合わせて,圧力推定問題に対処する。
我々のGNNモデルでは、オランダの大規模WDNの圧力は1.94mH$O、MAPEは7%と見積もられている。
論文 参考訳(メタデータ) (2023-11-17T15:30:12Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
機械学習を用いて乱流シミュレーションのための低次/サロゲートモデルを開発することを目的としている。
異なるモデル構造が解析され、U-NET構造は標準FNOよりも精度と安定性が良い。
論文 参考訳(メタデータ) (2023-07-25T14:09:53Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Transfer Learning in Deep Learning Models for Building Load Forecasting:
Case of Limited Data [0.0]
本稿では,この問題を克服し,ディープラーニングモデルの性能を向上させるためのビルディング・ツー・ビルディング・トランスファー・ラーニング・フレームワークを提案する。
提案手法は,スクラッチからトレーニングを行う従来のディープラーニングと比較して,予測精度を56.8%向上させた。
論文 参考訳(メタデータ) (2023-01-25T16:05:47Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
気候予測は、流体シミュレーションにおける全ての乱流スケールを解決するために、微細な時間分解能を必要とする。
現在の数値モデル解法 PDEs on grids that too coarse (3km~200km on each side)
本研究では,空間的位置問合せが与えられたPDEの空間的連続解を予測する新しいアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-10-11T14:52:20Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory
Prediction [5.346782918364054]
我々は,より効率的かつ正確な軌道予測を支援するために,新しいCNNベースの時空間グラフフレームワークGraphCNTを提案する。
従来のモデルとは対照的に,我々のモデルにおける空間的・時間的モデリングは各局所時間ウィンドウ内で計算される。
本モデルは,様々な軌道予測ベンチマークデータセットの最先端モデルと比較して,効率と精度の両面で優れた性能を実現する。
論文 参考訳(メタデータ) (2020-03-16T12:56:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。