論文の概要: A Note on Estimation Error Bound and Grouping Effect of Transfer Elastic Net
- arxiv url: http://arxiv.org/abs/2412.01010v1
- Date: Mon, 02 Dec 2024 00:00:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:50:22.954642
- Title: A Note on Estimation Error Bound and Grouping Effect of Transfer Elastic Net
- Title(参考訳): 転送弾性ネットの誤差境界とグルーピング効果に関する一考察
- Authors: Yui Tomo,
- Abstract要約: Transfer Elastic Netは線形回帰モデルの推定方法である。
我々は、推定器の非漸近$ell$ノルム推定誤差を導出し、転送弾性ネットが効果的に機能するシナリオについて議論する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The Transfer Elastic Net is an estimation method for linear regression models that combines $\ell_1$ and $\ell_2$ norm penalties to facilitate knowledge transfer. In this study, we derive a non-asymptotic $\ell_2$ norm estimation error bound for the estimator and discuss scenarios where the Transfer Elastic Net effectively works. Furthermore, we examine situations where it exhibits the grouping effect, which states that the estimates corresponding to highly correlated predictors have a small difference.
- Abstract(参考訳): Transfer Elastic Netは、知識伝達を容易にするために$\ell_1$と$\ell_2$標準ペナルティを組み合わせた線形回帰モデルの推定方法である。
本研究では,推定器の非漸近的$\ell_2$ノルム推定誤差を導出し,転送弾性ネットが効果的に機能するシナリオについて議論する。
さらに,高い相関の予測値に対応する推定値に差があることを示すグループ化効果を示す状況についても検討した。
関連論文リスト
- Heteroscedastic Double Bayesian Elastic Net [1.1240642213359266]
平均分散と対数分散を共同でモデル化する新しいフレームワークであるヘテロセダスティックダブルベイズ弾性ネット(HDBEN)を提案する。
本手法は, 回帰係数と分散パラメータの分散とグループ化を同時に引き起こし, データの複雑な分散構造を捉える。
論文 参考訳(メタデータ) (2025-02-04T05:44:19Z) - TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression [109.69084997173196]
奥行き回帰は、予測分布の平均と共分散を負の対数類似度を用いて共同最適化する。
近年の研究では, 共分散推定に伴う課題により, 準最適収束が生じる可能性が示唆されている。
1)予測共分散は予測平均のランダム性を真に捉えているか?
その結果, TICは共分散を正確に学習するだけでなく, 負の対数類似性の収束性の向上も促進することがわかった。
論文 参考訳(メタデータ) (2023-10-29T09:54:03Z) - U-Statistics for Importance-Weighted Variational Inference [29.750633016889655]
重要重み付き変分推論における推定のばらつきを低減するために,U-statisticsを用いた手法を提案する。
実験により,U-Statistic variance reduction(U-Statistic variance)の低減は,モデルの範囲での推論性能の大幅な改善につながることが確認された。
論文 参考訳(メタデータ) (2023-02-27T16:08:43Z) - Off-policy estimation of linear functionals: Non-asymptotic theory for
semi-parametric efficiency [59.48096489854697]
観測データに基づいて線形汎関数を推定する問題は、因果推論と包帯文献の両方において標準的である。
このような手順の平均二乗誤差に対して非漸近上界を証明した。
非漸近的局所ミニマックス下限をマッチングすることにより、有限標本のインスタンス依存最適性を確立する。
論文 参考訳(メタデータ) (2022-09-26T23:50:55Z) - Provably tuning the ElasticNet across instances [53.0518090093538]
我々は、複数の問題インスタンスにまたがるリッジ回帰、LASSO、ElasticNetの正規化パラメータをチューニングする問題を考察する。
我々の結果は、この重要な問題に対する学習理論による最初の一般的な保証である。
論文 参考訳(メタデータ) (2022-07-20T21:22:40Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
ノイズの多いデータに完全に適合するニューラルネットワークモデルは、見当たらないテストデータにうまく一般化できる。
我々は,2層線形ニューラルネットワークを2乗損失の勾配流で補間し,余剰リスクを導出する。
論文 参考訳(メタデータ) (2021-08-25T22:01:01Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Structure Learning in Inverse Ising Problems Using $\ell_2$-Regularized
Linear Estimator [8.89493507314525]
モデルミスマッチにも拘わらず,正則化を伴わずに線形回帰を用いてネットワーク構造を完璧に識別できることを示す。
本稿では,2段階推定器を提案する。第1段階では隆起回帰を用い,比較的小さな閾値で推算を行う。
適切な正規化係数としきい値を持つ推定器は、0M/N1$でもネットワーク構造の完全同定を実現する。
論文 参考訳(メタデータ) (2020-08-19T09:11:33Z) - The Generalized Lasso with Nonlinear Observations and Generative Priors [63.541900026673055]
我々は、幅広い測定モデルで満たされるガウス下測度を仮定する。
この結果から, 局所埋込特性を仮定して, 均一回復保証まで拡張できることが示唆された。
論文 参考訳(メタデータ) (2020-06-22T16:43:35Z) - Weighted Lasso Estimates for Sparse Logistic Regression: Non-asymptotic
Properties with Measurement Error [5.5233023574863624]
2種類の重み付きラスソ推定法が$ell_1$-penalized logistic regressionに対して提案されている。
提案手法の有限標本挙動は,非漸近的オラクル不等式によって示される。
シミュレーションデータの重み付けされた推定値と比較し,実データ解析にこれらの手法を適用した。
論文 参考訳(メタデータ) (2020-06-11T00:58:14Z) - The Counterfactual $\chi$-GAN [20.42556178617068]
因果推論は、しばしば、治療の割り当てが結果から独立していることを要求する反ファクト的枠組みに依存する。
本研究は,CGAN(Counterfactual $chi$-GAN)と呼ばれるGAN(Generative Adversarial Network)に基づくモデルを提案する。
論文 参考訳(メタデータ) (2020-01-09T17:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。