Phase transitions and remnants of fractionalization at finite temperature in the triangular lattice quantum loop model
- URL: http://arxiv.org/abs/2412.01503v1
- Date: Mon, 02 Dec 2024 13:55:29 GMT
- Title: Phase transitions and remnants of fractionalization at finite temperature in the triangular lattice quantum loop model
- Authors: Xiaoxue Ran, Sylvain Capponi, Junchen Rong, Fabien Alet, Zi Yang Meng,
- Abstract summary: The quantum loop model (QLM) and the quantum dimer model (QDM) are archetypal correlated systems with local constraints.
Here we study, via unbiased quantum Monte Carlo simulations and field theoretical analysis, the finite temperature phase diagram of the QLM on the triangular lattice.
- Score: 0.3495246564946556
- License:
- Abstract: The quantum loop model (QLM), along with the quantum dimer model (QDM), are archetypal correlated systems with local constraints. With natural foundations in statistical mechanics, these models are of direct relevance to various important physical concepts and systems, such as topological order, lattice gauge theories, geometric frustrations, or more recently Rydberg quantum simulators. However, the effect of finite temperature fluctuations on these quantum constrained models has been barely explored. Here we study, via unbiased quantum Monte Carlo simulations and field theoretical analysis, the finite temperature phase diagram of the QLM on the triangular lattice. We discover that the vison plaquette (VP) crystal experiences a finite temperature continuous transition, which smoothly connects to the (2+1)d Cubic* quantum critical point separating the VP and $\mathbb{Z}_{2}$ quantum spin liquid phases. This finite temperature phase transition acquires a unique property of {\it thermal fractionalization}, in that, both the cubic order parameter -- the plaquette loop resonance -- and its constituent -- the vison field -- exhibit independent criticality signatures. This phase transition is connected to a 3-state Potts transition between the lattice nematic phase and the high-temperature disordered phase.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Simulating the Transverse Field Ising Model on the Kagome Lattice using a Programmable Quantum Annealer [0.0]
We embed the antiferromagnetic Ising model on the Kagome lattice on the latest architecture of D-Wave's quantum annealer, the Advantage2 prototype.
We show that under a finite longitudinal field the system exhibits a one-third magnetization plateau, consistent with a classical spin liquid state of reduced entropy.
An anneal-pause-quench protocol is then used to extract an experimental ensemble of states resulting from the equilibration of the model at finite transverse and longitudinal field.
arXiv Detail & Related papers (2023-10-10T15:22:01Z) - Cubic* criticality emerging from a quantum loop model on triangular lattice [5.252398154171938]
We show that the triangular lattice quantum loop model (QLM) hosts a rich ground state phase diagram with nematic, vison plaquette (VP) crystals, and the $mathbb$ quantum spin liquid (QSL) close to the Rokhsar-Kivelson quantum critical point.
These solutions are of immediate relevance to both statistical and quantum field theories, as well as the rapidly growing experiments in Rydberg atom arrays and quantum moir'e materials.
arXiv Detail & Related papers (2023-09-11T18:00:05Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Tricritical point in the quantum Hamiltonian mean-field model [0.0]
We propose a generalization of the classical Hamiltonian mean-field model to fermionic particles.
We study the phase diagram and thermodynamic properties of the model in the canonical ensemble for ferromagnetic interactions.
Our results offer an intriguing example of tricriticality in a quantum system with long-range couplings.
arXiv Detail & Related papers (2022-02-17T19:01:14Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Detection of quantum phase boundary at finite temperatures in integrable
spin models [0.0]
Quantum phase transitions occur when quantum fluctuation destroys order at zero temperature.
With an increase in temperature, normally the thermal fluctuation wipes out any signs of this transition.
Here we identify a physical quantity that shows non-analytic behaviour at finite temperatures.
arXiv Detail & Related papers (2021-11-22T11:26:15Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Observation of a quantum phase transition in the quantum Rabi model with
a single trapped ion [0.0]
Quantum phase transitions (QPTs) are usually associated with many-body systems with large degrees of freedom approaching the thermodynamic limit.
It has been realized that a QPT can occur in a simple system composed of only a two-level atom and a single-mode bosonic field.
We report the first experimental demonstration of a QPT in the quantum Rabi model using a single trapped ion.
arXiv Detail & Related papers (2021-02-10T13:03:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.