Single-Photon Generation: Materials, Techniques, and the Rydberg Exciton Frontier
- URL: http://arxiv.org/abs/2412.01573v1
- Date: Mon, 02 Dec 2024 14:56:19 GMT
- Title: Single-Photon Generation: Materials, Techniques, and the Rydberg Exciton Frontier
- Authors: Arya Keni, Kinjol Barua, Khabat Heshami, Alisa Javadi, Hadiseh Alaeian,
- Abstract summary: Single-photon emitters generate individual photons in bursts or streams.
They are paramount in emerging quantum technologies such as quantum key distribution, quantum repeaters, and measurement-based quantum computing.
This review article highlights different material systems with deterministic and controlled single photon generation.
- Score: 0.0
- License:
- Abstract: Due to their quantum nature, single-photon emitters generate individual photons in bursts or streams. They are paramount in emerging quantum technologies such as quantum key distribution, quantum repeaters, and measurement-based quantum computing. Many such systems have been reported in the last three decades, from Rubidium atoms coupled to cavities to semiconductor quantum dots and color centers implanted in waveguides. This review article highlights different material systems with deterministic and controlled single photon generation. We discuss and compare the performance metrics, such as purity and indistinguishability, for these sources and evaluate their potential for different applications. Finally, a new potential single-photon source, based on the Rydberg exciton in solid state metal oxide thin films, is introduced, briefly discussing its promising qualities and advantages in fabricating quantum chips for quantum photonic applications.
Related papers
- Many-Body Photon Blockade and Quantum Light Generation from Cavity Quantum Materials [0.0]
We show that photons bear witness to cavity quantum-electrodynamical modifications of the material.
We show that materials near a quantum critical point can realize a collective many-body photon blockade.
Our findings provide new routes for interrogating and harnessing cavity-embedded quantum materials as quantum light sources.
arXiv Detail & Related papers (2024-11-13T19:00:25Z) - Widely tunable solid-state source of single-photons matching an atomic
transition [0.18593647992779513]
Hybrid quantum technologies aim to harness the best characteristics of multiple quantum systems.
quantum dots embedded in semiconductor nanowires can produce highly pure, deterministic, and indistinguishable single-photons with high repetition.
atomic ensembles offer robust photon storage capabilities and strong optical nonlinearities that can be controlled with single-photons.
arXiv Detail & Related papers (2023-09-13T05:47:26Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Orbital angular momentum based intra- and inter- particle entangled
states generated via a quantum dot source [0.0]
This work employs a bright QD single-photon source to generate a complete set of quantum states for information processing with OAM photons.
We first study the hybrid intra-particle entanglement between the OAM and the polarization degree of freedom of a single-photon.
Then, we investigate the hybrid inter-particle entanglement, by exploiting a probabilistic two qudit OAM-based entangling gate.
arXiv Detail & Related papers (2022-11-09T19:20:49Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Droplet Epitaxy of Semiconductor Nanostructures for Quantum Photonic
Devices [1.0439136407307046]
A key component is a light source, able to provide single or entangled photon pairs.
Semiconductor quantum dots are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips.
Recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometime even outperform) conventional SK InGaAs QDs as quantum emitters.
arXiv Detail & Related papers (2021-03-28T08:55:55Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Multiplexed Single Photons from Deterministically Positioned Nanowire
Quantum Dots [0.0]
Solid-state quantum emitters are excellent sources of on-demand indistinguishable or entangled photons.
We present a scalable technique to multiplex streams of photons from multiple independent quantum dots, on-chip, into a fiber network for use off-chip.
arXiv Detail & Related papers (2020-05-11T18:10:59Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.