ECG-SleepNet: Deep Learning-Based Comprehensive Sleep Stage Classification Using ECG Signals
- URL: http://arxiv.org/abs/2412.01929v1
- Date: Mon, 02 Dec 2024 19:31:25 GMT
- Title: ECG-SleepNet: Deep Learning-Based Comprehensive Sleep Stage Classification Using ECG Signals
- Authors: Poorya Aghaomidi, Ge Wang,
- Abstract summary: This study proposes a novel three-stage approach for sleep stage classification using ECG signals.
In the first phase, we estimate key features using Feature Imitating Networks (FINs) to achieve higher accuracy and faster convergence.
The second phase focuses on identifying the N1 sleep stage through the time-frequency representation of ECG signals.
The third phase integrates models from the previous stages and employs a Kolmogorov-Arnold Network (KAN) to classify five distinct sleep stages.
- Score: 4.070551979222657
- License:
- Abstract: Accurate sleep stage classification is essential for understanding sleep disorders and improving overall health. This study proposes a novel three-stage approach for sleep stage classification using ECG signals, offering a more accessible alternative to traditional methods that often rely on complex modalities like EEG. In Stages 1 and 2, we initialize the weights of two networks, which are then integrated in Stage 3 for comprehensive classification. In the first phase, we estimate key features using Feature Imitating Networks (FINs) to achieve higher accuracy and faster convergence. The second phase focuses on identifying the N1 sleep stage through the time-frequency representation of ECG signals. Finally, the third phase integrates models from the previous stages and employs a Kolmogorov-Arnold Network (KAN) to classify five distinct sleep stages. Additionally, data augmentation techniques, particularly SMOTE, are used in enhancing classification capabilities for underrepresented stages like N1. Our results demonstrate significant improvements in the classification performance, with an overall accuracy of 80.79% an overall kappa of 0.73. The model achieves specific accuracies of 86.70% for Wake, 60.36% for N1, 83.89% for N2, 84.85% for N3, and 87.16% for REM. This study emphasizes the importance of weight initialization and data augmentation in optimizing sleep stage classification with ECG signals.
Related papers
- MobileNetV2: A lightweight classification model for home-based sleep apnea screening [3.463585190363689]
This study proposes a novel lightweight neural network model leveraging features extracted from electrocardiogram (ECG) and respiratory signals for early OSA screening.
ECG signals are used to generate feature spectrograms to predict sleep stages, while respiratory signals are employed to detect sleep-related breathing abnormalities.
By integrating these predictions, the method calculates the apnea-hypopnea index (AHI) with enhanced accuracy, facilitating precise OSA diagnosis.
arXiv Detail & Related papers (2024-12-28T01:37:25Z) - Classification of sleep stages from EEG, EOG and EMG signals by SSNet [2.1915057426589746]
Classification of sleep stages plays an essential role in diagnosing sleep-related diseases including Sleep Disorder Breathing (SDB) disease.
We propose an end-to-end deep learning architecture, named SSNet, which comprises of two deep learning networks based on CNN andLSTM.
Our model achieves the best performance in classifying sleep stages when compared with the state-of-the-art techniques.
arXiv Detail & Related papers (2023-07-03T01:05:24Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
We propose a novel approach for inter-patient ECG classification using a compact 1D Self-Organized Operational Neural Networks (Self-ONNs)
We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks.
Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved.
arXiv Detail & Related papers (2022-04-07T22:49:18Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Ensemble of Convolution Neural Networks on Heterogeneous Signals for
Sleep Stage Scoring [63.30661835412352]
This paper explores and compares the convenience of using additional signals apart from electroencephalograms.
The best overall model, an ensemble of Depth-wise Separational Convolutional Neural Networks, has achieved an accuracy of 86.06%.
arXiv Detail & Related papers (2021-07-23T06:37:38Z) - Sleep Staging Based on Serialized Dual Attention Network [0.0]
We propose a deep learning model SDAN based on raw EEG.
It serially combines the channel attention and spatial attention mechanisms to filter and highlight key information.
It achieves excellent results in the N1 sleep stage compared to other methods.
arXiv Detail & Related papers (2021-07-18T13:18:12Z) - A Two-Stage Approach to Device-Robust Acoustic Scene Classification [63.98724740606457]
Two-stage system based on fully convolutional neural networks (CNNs) is proposed to improve device robustness.
Our results show that the proposed ASC system attains a state-of-the-art accuracy on the development set.
Neural saliency analysis with class activation mapping gives new insights on the patterns learnt by our models.
arXiv Detail & Related papers (2020-11-03T03:27:18Z) - Classifying sleep-wake stages through recurrent neural networks using
pulse oximetry signals [0.0]
The regulation of the autonomic nervous system changes with the sleep stages.
We exploit these changes with the aim of classifying the sleep stages in awake or asleep using pulse oximeter signals.
We applied a recurrent neural network to heart rate and peripheral oxygen saturation signals to classify the sleep stage every 30 seconds.
arXiv Detail & Related papers (2020-08-07T21:43:46Z) - Device-Robust Acoustic Scene Classification Based on Two-Stage
Categorization and Data Augmentation [63.98724740606457]
We present a joint effort of four groups, namely GT, USTC, Tencent, and UKE, to tackle Task 1 - Acoustic Scene Classification (ASC) in the DCASE 2020 Challenge.
Task 1a focuses on ASC of audio signals recorded with multiple (real and simulated) devices into ten different fine-grained classes.
Task 1b concerns with classification of data into three higher-level classes using low-complexity solutions.
arXiv Detail & Related papers (2020-07-16T15:07:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.