Teaching Quantum Formalism and Postulates to First-Year Undergraduates
- URL: http://arxiv.org/abs/2412.02017v1
- Date: Mon, 02 Dec 2024 22:39:34 GMT
- Title: Teaching Quantum Formalism and Postulates to First-Year Undergraduates
- Authors: Jeremy Levy, Chandralekha Singh,
- Abstract summary: The only pre-requisite is a familiarity with vector dot products.
This approach enables students to learn Dirac notation and core postulates of quantum mechanics at a much earlier stage in their academic career.
- Score: 0.0
- License:
- Abstract: Traditional approaches to undergraduate-level quantum mechanics require extensive mathematical preparation, preventing most students from enrolling in a quantum mechanics course until the third year of a physics major. Here we describe an approach to teaching quantum formalism and postulates that can be used with first-year undergraduate students and even high school students. The only pre-requisite is a familiarity with vector dot products. This approach enables students to learn Dirac notation and core postulates of quantum mechanics at a much earlier stage in their academic career, which can help students prepare for careers in quantum science and engineering and advance the Second Quantum Revolution.
Related papers
- A Short Guide to Quantum Mechanics -- Some Basic Principles [0.0]
It starts by asking whether quantum physics is important, or weird, or incomprehensible.
It explains why particles sometimes behave like waves, and how uncertainty and randomness enter physics.
Modern topics, like magnetic resonance imaging (MRI) and quantum computing are also covered.
arXiv Detail & Related papers (2024-08-01T17:14:54Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Lecture Notes on Quantum Electrical Circuits [49.86749884231445]
Theory of quantum electrical circuits goes under the name of circuit quantum electrodynamics or circuit-QED.
The goal of the theory is to provide a quantum description of the most relevant degrees of freedom.
These lecture notes aim at giving a pedagogical overview of this subject for theoretically-oriented Master or PhD students in physics and electrical engineering.
arXiv Detail & Related papers (2023-12-08T19:26:34Z) - Quantum Picturalism: Learning Quantum Theory in High School [0.3764231189632788]
Quantum theory is often regarded as challenging to learn and teach.
We propose "Quantum Picturalism" as a new approach to teaching the fundamental concepts of quantum theory and computation.
arXiv Detail & Related papers (2023-12-06T18:16:12Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Hello Quantum World! A rigorous but accessible first-year university
course in quantum information science [0.0]
Hello Quantum World! introduces a broad range of fundamental quantum information and computation concepts.
Some of the topics covered include superposition, entanglement, quantum gates, teleportation, quantum algorithms, and quantum error correction.
arXiv Detail & Related papers (2022-09-25T18:59:47Z) - An Introduction to Quantum Machine Learning for Engineers [36.18344598412261]
Quantum machine learning is emerging as a dominant paradigm to program gate-based quantum computers.
This book provides a self-contained introduction to quantum machine learning for an audience of engineers with a background in probability and linear algebra.
arXiv Detail & Related papers (2022-05-11T12:10:52Z) - Quantum physics in secondary school -- milq [0.0]
The aim is to achieve a conceptually clear formulation of quantum physics with a minimum of formulas.
In order to provide students with verbal tools they can use in discussions and argumentations we formulated four "reasoning tools"
They help to facilitate qualitative discussions of quantum physics, allow students to predict quantum mechanical effects, and help to avoid learning difficulties.
arXiv Detail & Related papers (2020-12-30T14:06:11Z) - Teaching quantum information science to high-school and early
undergraduate students [0.0]
This program allows students to perform meaningful hands-on calculations with quantum circuits and algorithms.
A combination of pen-and-paper exercises and IBM Q simulations helps students understand the structure of quantum gates and circuits.
arXiv Detail & Related papers (2020-05-16T05:16:23Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.